
UNCLASSIFIED - UNLIMITED

NORTH ATLANTIC TREATY ORGANIZATION

DEFENCE RESEARCH GROUP

II

TECHNICAL PROCEEDINGSAD-A246 868 AC/243(Panel 11)TP/1

hi, III 1111111 I
DTIC

S ELECTE
g

S FEB 21992D

SYMPOSIUM ON
MILITARY INFORMATION SYSTEMS

ENGINEERING

PROCEEDINGS

Panel 11 on Information Processing Technology

[;This docuynen boa be roe

92-04817
92 2 25 04'TlL ._ _ _,__ _ t, , • e,, ,- e ,, * , lt to r '

CONSEIL DE L'ATLANTIQUE NORD
NORTH ATIANTIC COUNCIL

UNCLASSI FI ED/UNLIMITED

ORIGINAL: ENGLISH TECHNICAL PROCEEDINGS
27 December 1991 AC1243(Panel 11 'TP/1

DEFENCE RESEARCH GROUP

PANEL 11 ON INFORMATION PROCESSING TECHNOLOGY

Technical Proceedings of the Symposium on
Military Information Systems Engineering

Note by the Secretary

These are the Technical Proceedings of a Symposium on Military
Information Systems Engineering. It was organized by Panel 11 on Information
Processing Technology. The Executive Summary of these Proceedings ("Yellow
Pages") will be distributed under reference AC/243-N/347 dated 13 January 1992.

(Signed) Dr. J. VERMOREL

F AcceSOn For Defence Research Section

Accesio "For I

NTIS CD /U I M I E D

NATO,
1110 Brussels. daII i mnI~ISII

,,, , . T D / U N L I M I TE D

NATO UNCLASSI FI ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
AC/243(Panel 11)TP/1 UNCLASSIFIED/UNLIMITED

5. Date: 6. Total Pages:
27 DEC 91 235 p.

7. Title (NU):
SYMPOSIUM ON MILITARY INFORMATION SYSTEMS ENGINEERING

8. Presented at:
RSRE, Malvern, UK 8-10 May 1990

9. Author's/Editor's:
S. Bond et al.

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
RSRE Malvern Defence Research Section

St. Andrews Road NATO Headquarters
Ma I vern B-1110 Brussels
Worcestershire WR14 3PS Belgium
United Kingdom (Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:
KNOWLEDGE-BASED SYSTEMS, SOFTWARE TECHNOLOGY, C31 SYSTEMS
DEVELOPMENT, LIFE-CYCLE MODELS, FORMAL METHODS

14. Abstract:

Panel 11 organized a symposium for information exchange and
discussion of current research in information processing
technology and its application to the engineering of military
information systems. Four sessions were held:
(a) Engineering for the System Life-Cycle,
(b) Knowledge-Based Systems,
(c) Software Technology,
(d) C31 Systems Development.
As a main conclusion, system procurement practices allowing for
incremental and evolutionary development would bring significant
benefit.

-ii- AC/243(Panel 11)TP/1

OUTLINE OF CHAPTERS

Pages No.

0. Executive Summary iii - viii

1. Objectives of the Symposium 1 - 2

2. Engineering for the System Life Cycle 3 - 7

3. Knowledge Based Systems 8 - 9

4. Software Technology 10 - 11

5. C31 Systems Development 12 - 14

6. Conclusions 15 - 18

List of Participants 19 - 22

Papers presented at the Symposium 23 - 24

AC/243(Panel 11) TP/1
- iii -

CHAPTER 0

EXECUTIVE SUMMARY

0.1 Summary of the Symposium

i. The symposium provided a forum for information exchange and
discussion of current research in information processing technology and its
application to the engineering of military information systems.

ii. The objectives were:

(a) To assess the problems of engineering information processing
systems for military use

(b) To identify emerging technologies and techniques for system
engineering and evaluate the benefits offered

(c) To determine the research needed to facilitate the introduction
and application of beneficial techniques to the engineering of future
military systems.

iii. The following summary outlines the topics considered in the
presentations and the major points of the discussions. Four sessions were
held on the topics of:

(a) Engineering for the System Life-Cycle

(b) Knowledge-Based Systems

(c) Software Technology

(d) C31 Systems Development

0.2 Engineering for the System Life-Cycle

iv. Six papers were presented covering prototyping, software
evolution, object-oriented and transformational techniques for system
specification, formal methods and the spiral model for life-cycle system
development. Some of the questions addressed were (1) the purpose, potential
benefits and problems of prototyping and (2) the identification of various
models for system development, and their suitability and application.

- iii -

AC/243(Panel 11) TP/1
- iv -

v. The following observations were made. There is more than one
model for life-cycle systems development. They range from the traditional
waterfall model, which is understood from a conceptual and contracting point
of view but which is not effective for systems addressing vague or evolving
requirements, through models which involve prototyping to the spiral model
which assumes a number of iterations and can develop at each iteration a
system that contains subsystems at differing levels of abstraction. Although
spiral-type life-cycle models appear most attractive for military systems,
there has been little practical experience with them and there needs to be a
cultural change to allow them to be addressed by the procurement agencies and
to be managed effectively.

vi. The purpose of prototyping is to clarify requirements, to solidify
specifications, and to give an early "look and feel" for the system users.
This leads to significant user involvement in the early stages and better user
understanding and acceptance of the developed system. However it can lead to
design decisions being made too early in the development cycle. There can be
a perception that the prototype is the real system and that further (costly)
engineering need not take place. This is a tendency that should be resisted
as prototyping tends to concentrate on the mainstream requirements rather than
the exceptions.

vii. The session identified formal methods and object-oriented
paradigms as emerging technologies addressing the requirements and
specification phases. Formal methods give the potential for error-free
transformations from system specification to implementation. The object-
oriented methods support rapid prototyping.

0.3 Knowledge-based Systems

viii. Two papers focused on the use of Artificial Intelligence
techniques for the automation of software development, and the quality control
of expert systems for operational use.

ix. The goal of automating software development from an initial
(formal) specification into executable code is ambitious and long-term. For
data handling, the research addresses data type design rather than algorithms.
Real-time issues are not yet considered.

x. Validation of expert systems intended for operational use is
essential. Traditional development and quality control models do not map well
on to expert systems. Reliability and maintainability of the knowledge base
are recognized as the principal quality criteria.

- iV -

AC/243(Panel 11) TP/1

xi. Future operational use of knowledge-based systems should not be

restricted to stand-alone sub-systems. They could offer a higher level of

help in decision making within command and control systems. This raises

questions such as (1) how to connect a knowledge base to the rest of the

system (2) how to identify and bound the necessary knowledge and (3) how to

collect the knowledge that exists.

0.4 Software Technology

xii. Three papers identified promising technologies for the improved

development of software systems: a universal intermediate language (TDF) as
an architecture-independent and programming language-independent format for
program; the development language DEVA, aimed at the formal development of

software objects which would be "correct by construction"; and some aspects

of the ARCADIA research programme.

xiii. The potential impact of these technologies was described. A

universal intermediate language is an approach to software distribution and

portability. The introduction of an ANDF (Architecture Neutral Distribution

Format) is expected to increase software re-use, encouraging the sale of

software components which would all be distributed in ANDF for installation

on a variety of computer architectures.

xiv. The use of formal methods was seen as conferring advantages in

obtaining correct programs and to be fruitful in the context of software re-
use as a means of solving sets of similar problems. Potential problems are

its scalability for large systems and possible difficulties of understanding.

xv. The ARCADIA approach attempts to break down the distinction

between programming language facilities and database facilities by providing

strong typing integrated with persistent data. Discussion included comparison
with the PCTE and CAIS interface specifications. Both PCTE and CAIS use a

separate database management system. These systems were observed to be based
on 1970's research, whereas persistent systems were aimed at the next

generation.

0.5 C31 Systems Development

xvi. Four papers ranged from the conceptual to the experimental. An

experimental implementation was reported of a general architecture for a

distributed command and control information system using the ISO/OSI Reference

Model, the Ada language and commercial off-the-shelf software (COTS). This

highlighted the effort still needed to adapt and integrate COTS with security

components and specific applications such as expert system components.

V -

AC/243(Panel 11) TP/1
- vi -

xvii. A paper on the development approach for C31 illustrated the
benefits offered by object oriented languages in meeting characteristics of
C31 systems such as interoperability, security, integrity and testability, and
the need for the system to evolve to be able to handle changes.

xviii. A case study of the development of Army C31 systems described
activities over 20 years. Extensive system modelling was carried out to
define the hardware and software architectures with respect to redundancy,
performance, survivability and functionality. The subsequent paper also
developed the theme of survivability. Survivability may be achieved in the
most cost-effective way through replication of function and dispersion.
Experiments looked at multi-media communications capability, the evaluation
of re-connection strategies and the use of advanced technologies for creating
a strategy planning system in a highly stressed environment.

xix. The discussion again emphasised that the role of the user during
system development is essential. The development method must be chosen
accordingly and prototyping seems a promising approach. Military users are
conservative in terms of technology, so high level quality prototypes are
essential for acceptance.

0.6 Main Conclusions

xx. Several emerging technologies were identified as having potential
benefit for future military systems. Various technical problem areas were
agreed to need continuing research. In addition, the discussions identified
significant problems concerned with the mapping of new system development
methods and life-cycle models to procurement practices.

xxi. Emerging technologies include formal methods, prototyping, object-
oriented programming, knowledge-based systems, persistent data systems and
techniques for software portability. Many different and promising paradigms
are being used. However, the integration of the different development
paradigms can cause problems, particularly in the approach to system
integration. Formal methods are currently immature but will become an
important tool in the longer term. This was identified as one of the topics
for future research activities.

xxii. Further work is needed to define the role of prototyping and its
relation to the system development model. An important element for study is
the means of transition from prototype to engineered operational system. The
infrastructure for operational systems seems less well developed than that

- vi -

AC/243(Panel 11) TP/1
- vii -

currently being applied within the prototyping environments. To ease the
transition further work should identify improvements for the operational
infrastructure and how they might be achieved.

xxiii. The development of C31 systems requires specific approaches to
solve problems such as the integration process, the use of commercially
available hardware and/or software, the re-usability of software and more
specifically military issues such as security, interoperability and
survivability. This type of system is very complex and requires a large
variety of engineering disciplines. Research and experimentation has shown
the value of an incremental and evolutionary development process including
prototyping. The issues raised by this are not only technical but concern the
adaptation of procurement policies to the emerging development technology.
Such issues were not considered as direct research problems.

0.7 Major Recommendations

xxiv. The symposium identified several areas to be considered for future
activities of Panel 11, including Formal Methods, Software re-usability,
portability, and interoperability, the use of Commercial off-the-shelf
software and Knowledge Engineering in C31.

xxv. The symposium discussions found that it was difficult to evaluate
the benefits offered by emerging technology in the context of current
procurement practice. The involvement of the military sponsor and the future
operational user from an early stage is essential in incremental and iterative
development. No recognized mechanisms exist to ensure this involvement.

xxvi. Thus, in considering the impact of emerging technology the
problems are not entirely technical. Many are connected with the acquisition
culture in defence which is strongly connected to a waterfall model of systems
development. Current procurement practice was felt to legislate against the
benefits expected from incremental and evolutionary development.

xxvii. There is an urgent need for a transition strategy, including
consideration of changed procurement practices, in order to allow full use of
beneficial emerging technology in the engineering of future military

information systems.

0.8 Military Implications

xxviii. Military operations place increasing reliance on the use of
software based systems for military operations. Systems in which software has
a critical part range from embedded weapons systems to large distributed C31.

- vii -

AC/243(Panel 11) TP/1
- viii -

The characteristics required of military C31 systems include security,
reliability, interoperability and survivability. This implies certain
properties of the system architecture such as distribution and
reconfigurability. System development is carried out against a background of
rapidly developing commercial hardware technology offering considerable price
and performance benefits. However, commercial developments in systems
engineering have not kept pace with this hardware technology improvement and
do not adequately address specific military requirements.

xxix. System procurement practices allowing for incremental and
evolutionary development would bring significant benefit. These methods help
to clarify requirements. They allow the incorporation of commercial off-the-
shelf software in appropriate subsystems. They allow utilization of relevant
standards including emerging Open Systems. Increasing re-use of software and
the ability to take timely advantage of commercial investment will be
essential for the cost-effective development and interoperability of future
military systems.

- vill -

AC/243(Panel 11) TP/1

CHAPTER I

1 OBJECTIVES OF THE SYMPOSIUM

1.1 Introduction

1. The symposium on Military Information Systems Engineering held by

Panel 11 at RSRE, Malvern, UK on 8-JQth May 1990 aimed to provide a forum for

information exchange and discuseurre'. research relating to digital

computing and information procesing technology for defence systems, and to
identify areas where future co-operative activities might be undertaken. The

initial call for papers intentionally had a wide scope. It suggested

technology topics such as high performance systems, massively parallel
architectures, expert system techniques, high integrity systems, databases for
system design, project support environments and software prototyping

techniques together with considerations of the system life-cycle from design

to maintenance and the specific requirements of military information systems.

Most of the abstracts received dealt with 'software engineering, system

development models and the characteristics of large command, control and

communications information systems. The symposium was accordingly structured

around these major topics.

1.2 Organization of the Symposium

2. The invited presentations were arranged in four sessions:

Engineering for the System Life-Cycle

Software Technology
Knowledge-Based Systems

C31 Systems Development

3. Considerable time for discussion was allowed after each group of

papers and the symposium concluded with a final session addressing the

questions and themes raised by the presentations. This resulted in a
"workshop-style" event, which was attended by 42 participants from ten nations
and NATO agencies.

1.3 Opening Session

4. The participants were welcomed to RSRE, Malvern, by Dr Boyd

Burgess, Head of Communications and Computing Group, RSRE on behalf of

Director, RSRE. Dr Burgess described RSRE's position as one of the four UK
military Defence Research Establishments, concerned with basic radar research,

command and control systems, communications and generic electronics technology

--

AC/243(Panel 11) TP/1
-2-

with application to defence systems. Communications and Computing Group is
the UK MOD centre for computing systems engineering and secure distributed
information systems research.

5. The Chairman of Panel 11, ICA J P Crestin responded, thanking RSRE
for the preparation of the Symposium and the participants for their interest.
He described the role of the Panel, which is the most recent panel of the DRG.
It was created 4-5 years ago, and has 3 sub groups at present: RSGI on
Distributed Systems Design Methodology, RSG2 on Trustworthy Systems and an
Exploratory Group on Software Engineering. Panel 11 works in a demanding
environment. The importance of software to defence systems is increasing.
However, commercial efforts surpass the military and it is impossible to cover
the whole field owing to the breadth of civil developments. A definition of
the specificity of the military requirement is needed to determine which
research activities should be undertaken. The Symposium would contribute to

the definition of future topics for the work of Panel 11.

6. The Symposium Director, Miss S G Bond, then presented the
detailed objectives for the symposium:

0 To assess the problems of engineering information processing systems

for military use

0 To identify emerging technologies and techniques for systems
engineering and evaluate the benefits offered

0 To determine the research needed to facilitate the introduction and

application of beneficial techniques to the engineering of future
military systems.

7. Certain considerations should be addressed in discussion to meet
these objectives. The workshop needed to

determine the specific characteristics of military information
processing systems

* review models for the development of information systems

assess the impact of emerging techniques on system design and
development

assess the problems of the application of these techniques to the
engineering of future military systems.t __- a -

AC/243(Panel 11) TP/]

-3-

CHAPTER 2

2.0 ENGINEERING FOR THE SYSTEM LIFE CYCLE

Session Chairman: V K Taylor (Canada)
Rapporteur: T A D White (UK)

2.1 Introduction

8. The "Engineering for the System Life Cycle" sessions contained six

papers and extended discussions with topics ranging from prototyping, software
evolution, the Spiral model to formal methods.

9. Some of the questions addressed were:

What are the models for life-cycle system development? Is one model

suitable for the development of all software systems?

What is the purpose of prototyping? What benefits are to be gained,
and what problems are encountered?

What technologies are emerging for the development of systems, and what

benefits do they offer?

2.2 Summary of Presentations

10. M Looney (UK) in his paper (with I Sinclair) on "Management and

Control of Prototyping as part of the Development Life Cycle" identified the
importance of iterative development of requirements, testing against real

users needs by prototyping. What is prototyped is the system structure and
basic functionality. This approach gives savings through life cycle

coordination, reduces risk through early visibility of the system for
comparison against perceived requirements and results in greater acceptability

of the developed system. The potential disadvantage lies in the short term

cost of prototyping and the potential paradox that the user may want the
"skeletal" prototype to be his system even though it is still merely the

foundation for the operational system.

11. B Barry (CA) presented a "Case Study in Object Oriented System
Engineering" in which AMEP, a prototype for an ESM signal processor was
discussed. It was estimated that the incremental, evolutionary prototyping

approach to "growing" more functions and capabilities has led. to a user
accepted system that will be transitioned to industry for development. The

object oriented prototyping approach was taken because of the vague and

3-

AC/243(Panel 11) TP/1
-4-

incomplete original requirements and the necessity to "build cheap" through
changing requirements. A significant lesson learned was that the object
oriented approach works and it is important to use a programming system that
works with ones method, not against it.

12. M. Gentleman (CA), in his presentation "Engineering the Process
of Software Evolution" highlighted the problems and potential for software
reuse. He introduced the concept of a "family of programs" in which the top
down design approach is not sensible. Shared components must be considered
first which implies a bottom-up design strategy. He considered that software
reuse extends to architectures, algorithms, data structures, file structures,
software components, databases, documentation, test procedures and user
interfaces. DoD Mil Std 2167A was considered very unhelpful for encouraging
reuse. The standard contractual process makes the problem worse - lowest
bidder and "cost plus" contracting do not encourage reuse. Further, the
specification of change evolution and tool support should be part of the
contracting process.

13. D Fikkert (NL) in his paper "The Spiral Model, Some Problems, Many
Solutions?" introduced the model and noted that experimental use of the Spiral
model is needed along with exchange of experience. Also, well defined
interfaces between project management, quality management and assurance, life
cycle, technical development and procurement are needed. Change is inevitable
and requires planning.

14. C Lewis (UK) in his paper (with B Ratcliff) "Transformational
Implementation of JSD Specifications in Smalltalk-80" discussed semantics
preserving transformations from the JSD framework into the object oriented
data abstraction and encapsulation paradigm that supports software reuse. The
rationale for this approach is to prototype specifications.

15. P Place (US) with W Wood contributed a paper "Formal Specification
and Requirements" in which recent work at the Software Engineering Institute
was discussed. The presentation concluded that formal methods are
particularly useful in the system specification phases and helped to identify
ambiguities and alternatives. Effective communication among team members was
enhanced by the approach. However, the presentation noted that formal methods
will not make the requirements correct; it will only help in ensuring that the
requirements stated are reflected in the underlying specification with a
commensurate potential for consistent design and implementation from the
requirements.

-.4-

AC/243(Panel 11) TP/1

-5-

12.3 Discussion

16. There was considerable discussion following the papers and at the

end of the session. The following gives the flavour of the comments made.

17. Prototyping captures requirements. The prototype exercises

requirements and allows the result to be validated by the customer. Usually
the prototype models the main functions and perhaps the logical structure of

the overall system. The man-machine interface is also a candidate for
prototyping. There is a need for heavy user involvement but you must be
prepared for the prototyping paradox - the system looks good and is wanted by

the customer but in fact it is only a shell masquerading as the total system.
Not all requirements will have been met. However, it was pointed out that if

the prototype "works", then you do have the basic requirement, and if the
prototype "fails" then lessons have been learned with regard to the

understanding of Lne requirements. From this point of view, whether
successful or a failure, prototyping is likely to be money well spent. It is

still not clear how the "essence" of a prototype is captured to allow it to
be a description of the required system suitable to serve in a contract. It
was observed that seeing one prototype only allows you to envisage
improvements to one approach, not to consider radically different approaches.

18. With respect to software reuse, it was observed that in the
present climate, reuse benefits the user but not the developer. How do you

give incentive to contractors to build reusable code? It is clear to
commercial developers that software reuse is essential and within a

corporation there is no contractual difficulty. However, defence contracting

appears different and there need to be some ways of building software reuse
into contracts. If you can get around the contracting issue, then you can

address the specification of components including the performance requirements
and testing procedures. This is needed for reusability. However, current

contracting culture makes reuse expensive. With reusable software performance
measurement becomes part of the process. The technical standards currently

in vogue do not advance the cause of software reuse. Language does not
necessarily solve problems; Ada is no better or worse for sharing and reuse

than other commonly used languages. Integrated Project Support Environments,
and present standardization efforts do not appear to help re-use. Program

portability theory is not improving and people do not understand the issues

involved.

19. There was an interesting interchange about the use of formal
methods. Safety/Liveness properties were assessed using proof theoretic
techniques in a manual way, although there was an automated toolset for

temporal logic. The assessment was not very detailed as there was not much

-5-

AC/243(Panel 11) TP/1
-6-

time available for this aspect. Time variant CSP was looked at but not used
as the intent was to use "mainstream" techniques. The specifications were not
just mathematically based but also included text. The specification
reviewers, who were not formal methods experts, appeared able to relate to
specifications in this form. Formal methods help to clarify requirements.
The system developer should be given both the formalism plus text. Although
the actual process of going from specification to code is not clear, there are
definite advantages to clarifying requirements. At the present state of
formal methods development, the specification of interrupts is complicated but
tractable.

2.4 Conclusion

20. The session on "Engineering for the System Life Cycle" was wide
ranging and the following observations can be made. There is more than one
model for Life Cycle systems development. They range from the traditional
waterfall model, which is understood from a conceptual and contracting point
of view but which is not effective for systems addressing vague or evolving
requirements, through models which involve prototyping to clarify requirements
and solidify specifications, to the Spiral model which assumes a number of
iterations and can develop at each iteration systems that contain subsystems
at differing levels of abstraction.

21. All participants essentially agreed that the Waterfall model of
system development, although easy to contract, does not work for evolutionary
or original systems but may only have application to systems that are
essentially replications of earlier systems with a well defined and static
external operating environment. Speakers advocated the advantages of
prototyping to evolve either system requirements or else the complete system
to a state where it is safe to engineer with a reasonable expectation that the
system will be accepted by the user. Although the Spiral type life cycle
models appear most attractive for military systems, there has been little
practical experience with them and there needs to be a cultural change to
allow them to be addressed by the procurement agencies and to be managed
effectively.

22. A purpose for prototyping is to give an early "look and feel" for
system users. This needs significant user involvement in the early stages and
leads to better user understanding and acceptance of the developed system.
Prototyping will help identify requirements deficiencies. However it can lead
to design decisions being made too early in the development cycle. There can
be a perception that the prototype is the real system and that further
(costly) engineering need not take place. This is a tendency that should be
resisted as prototyping tends to concentrate on the mainstream requirements

S6--

AC/243(Panel 11) TP/1
-7-

and concepts rather than the exceptions. One interesting idea is that the
prototype can be considered part of the documentation needed for the
engineering of the implemented systems.

23 The session identified formal methods and object-oriented paradigms
as technologies emerging for the development of systems, addressing the
requirements and specification phases. Formal methods help clarify
requirements and give the potential for error-free transformations from system
specification to implementation. The object-oriented methods support rapid
prototyping.

-7-

AC/243(Panel 11) TP/1

CHAPTER 3

3. KNOWLEDGE BASED SYSTENS

Session Chairman: ICA B Vors (France)
Rapporteur: Dr B M Barry (Canada)

3.1 Summary of Presentations

24. This session did not attempt to address the whole scope of
Artificial Intelligence in military systems but focused on two aspects related
to system engineering: automating software development and the quality of
expert systems.

25. In his paper "Automating the development of Software" Douglas R
Smith (US) presented KIDS (Kestrel Interactive Development System), an
experimental environment which offers a "derivation process" for software
development. Formal specifications - considered as a pre-requisite - are
interactively developed into code through a series of correctness-preserving
transformations. Tools for performing algorithm design, deductive inference,
program simplification, finite differencing optimizations, data structure
refinement and others are available to the program developer.

26. The presentation also included a brief discussion of the
application of these ideas to maintenance, prototyping and re-use (with stress
on a broad view of re-use, not just code, but program knowledge and design
decisions).

27. The "Quality of Expert Systems" by Michael Perre (NL) described the
integration of database theory and artificial intelligence as a step in the
direction of a better quality control of expert systems. The approach was
motivated by the perception that 'intelligent' modules are not developed with
the same attention to rigorous quality control as other subsystems. A
distinction was made between verification (has a specification been correctly
implemented) and validation (is the specification itself correct).

28. It was proposed that a number of techniques can be borrowed from
other areas to address the quality issue. These include structured
development methods, test and evaluation strategies, modular design and some
aspects of database theory. Deficiencies in these techniques when applied to
expert systems were also noted. These points were illustrated by a
description of DAMOCLES, a damage monitoring and control system.

-8B-

tI

AC/243(Panel 11) TP/1

-9-

3.2 Discussion

29. The discussion recognized that the goal of automating software

development by the transformation of the initial formal specification into

executable code is ambitious and long-term. For example, the research
addresses data type design rather than data handling algorithms, and real-time

issues are not yet considered.

30. Validation of Expert Systems intended for operational use was

considered essential. However, traditional development and quality control
models do not map well onto expert systems. Reliability and maintainability

of the knowledge base are recognized as the principal quality criteria. The

evaluation and testing of expert systems is an under-developed field of study.

Often it is not possible to test a system against an objective standard and
methods focused on a structured generation of expert system test cases are not

yet available.

31. Knowledge engineering could offer useful enhancements to system

development, for example in the design process as a link between the technical

and user points of view to elucidate requirements, or as a help when choosing

between design options. The subject is broad.

32. Future operational use of knowledge based systems should not be
restricted to stand-alone subsystems. They could offer a higher level of help

in decision making within command and control systems. This raises questions

such as:

* how to connect a knowledge base to the rest of the system

* how to identify and bond the necessary knowledge
• how to collect knowledge when it exists.

33. These are real problems, not within the scope of this symposium,
but a subject that should be addressed in the future.

9

AC/243(Panel 11) TP/1
- 10 -

CHAPTER 4

4. SOFTWARE TECHNOLOGY

Session Chairman: Charles J Holland (USA)

Rapporteur: Mrs M Stanley (UK)

4.1 Summary of presentations and discussion

34. The Software Technology session contained three papers identifying
promising technologies for the improved development of software systems.

35. Dr Peeling (UK) in his paper "Ten15 - A High Integrity Kernel for
Software Engineering Applications" reviewed the RSRE development of TDF (The
Ten15 Distribution Format) as a universal intermediate language to satisfy the
needs for software distribution and portability. It is a language
independent, architecture independent format comparable to a compiler
intermediate language. The introduction of an ANDF (Architecture Neutral
Distribution Format) is expected to increase software reuse, encouraging the
sale of software components, all of which use the ANDF.

36. In the discussion period, two reasons were put forward for the
rejection in the past of intermediate languages:

(i) debugging problems and the difficulty of recovering source

(ii) the problem of mixed language integration, such as in compatible
calling conventions.

37. The debugging problem has been dealt with by retaining the
name/value bindings in the compiler code. The calling convention problem can
be dealt with by adopting the calling convention of the target architecture
assembler. Compilers for a target machine normally adopt the convention for
integration with the target operating system, so this is not a penalty.

38. There is an on-going debate as to who should provide the installer
for an ANDF (translating ANOF program for a target architecture). Should the
installer be provided as part of the ANDF, written using automatic retargeting
techniques but giving relatively low performance, or by the hardware vendors?
The solution favoured by hardware vendors is that they should provide a high
performance code generator themselves. This approach is also favoured by the
developers of TDF, since a single very good installer is needed per machine
architecture.

- 10 -

AC/243(Panel 11) TP/1
- 11 -

39. The paper "Formal Program Developments" by Dr Cazin (FR) described

the development language DEVA, a prototype language aimed at formally

specifying a set of steps leading to a program. The language techniques for

abstracting a formal development were illustrated. The developed objects

would be known to be correct by construction; the method uses typing rules to

check the validity of the developed object. Reuse of these highly complex

specifications was suggested as a means of solving sets of similar problems.

40. In the discussion it was suggested that the problem of debugging

a complex formal development, thus ensuring the correctness of the design

rules that are employed, is comparable with the difficulty of debugging the

resulting program. However, if a formal development is considered as a data

structure, it can then be run through a proof checker, thus automating some

of the burden of proof of the formal development.

41. Dr Jack Wileden (US) presented the paper "Automated Support for the

Development and Evolution of Complex Software Systems" which reviewed some

aspects of the ARCADIA research program, namely OROS and its object management

capabilities, and tools for analysis. ARCADIA attempts to break down the

distinction between programming language facilities, database facilities and
filestore. There are three aspects to this ARCADIA approach: strong abstract

typing, transparency of persistence and tool interoperability.

42. Two questions were asked concerning the manner in which OROS deals

with garbage collection of persistent objects and concurrent access. Both

questions were cited as difficult problems, currently being worked on, but

needing more work.

43. A comparison of the PCTE and CAIS interface specifications with

OROS was requested. Both PCTE and CAIS use a separate database management

system, an Entity Relationship Attribute Database. The database functions are

callable from languages used by PCTE/CAIS. These systems were observed to be

based on 1970's technology - a useful development system for current use -
whereas OROS and Tent5 were aimed at the next generation.

44. The question was raised and considerable discussion followed on

whether money should be spent on an excellent implementation of PCTE or on

research projects such as ARCADIA and Ten15. No consensus was obtained.

- 11 -

AC/243(Panel 11) TP/1
- 12 -

CHAPTER 5

5. C31 SYSTEMS DEVELOPMENT

Session Chairman: Dr J Grosche (Germany)
Rapporteur: Dr L Simcox (UK)

5.1 Introduction

45. This session considered the problems of C31 Systems development as
a special case of military information system engineering. Four papers were
presented ranging from the conceptual to the experimental.

5.2 Summary of presentations

46. Herr W Storz (GE) in his paper "A Structure for Distributed Command
and Control Information Systems using Commercially Available Software"
reported on an experimental implementation of a C31 system called EIGER.
EIGER gives an example of a general architecture for a distributed command and
control information system using:

- the ISO/OSI reference model
- the Ada language
- off-the-shelf commercial software (COTS)

47. The use of a suitable protocol suite based on the ISO/OSI reference

model provides a functioning communication system and facilitates
interoperability.

48. The layered model handles security by extra sub-layers (not defined
in the basic ISO/OSI model).

49. The higher level of EIGER is completely written in Ada. To use

COTS, in particular communication software and database systems like ORACLE,
it is necessary to transform data structures from Ada to the C programming
language and to define interfaces to control parallel transactions handled by

the COTS database. EIGER was built as an experimental version to gain
experience. More work is still needed to adapt and integrate available
modules (COTS) with security components and specific applications such as
expert system components.

50. A Bories (FR) in his paper "Object Oriented languages as the
answer for interoperability and incremental development of Command and Control
Information Systems" described the advantages of using Object Oriented

- 12 -

I

AC/243(Panel 11) TP/1
- 13 -

Languages (OOL) in CCIS. After an historical overview he gave a brief
introduction into the nature of object oriented languages. Then he considered
CCIS characteristics and the corresponding advantages of using OOL:

CCIS Characteristics OOL Help

man-in-loop rapid prototyping

interoperability object description
evolution granularity
security

- confidentiality - hidden data
- integrity - inheritance
- reliability - plausibility
- testability

51. C31 systems need a special development methodology and object-
oriented languages are a promising approach to control complexity.

52. P Y Simonot and S L Auboin (FR) presented "Army C31 system
software design: a case study". P Y Simonot described the history of the
activities on Army C31 systems. Two prototypes and a test-bed were developed
beginning in 1968. This preparation allowed for extensive system modelling
to define the architecture (hardware and software) of the system with respect
to redundancy, performance, survivability and functionality. S L Auboin
explained the results, ie the structure of the operational system. Three types
of hardware components are used:

" database management computers
" user interface devices
• communication processors.

53. The software consists of three layers:

" basic standard packages (UNIX, GKS, X-WINDOWS, TCP/IP, CLIO database
management system, etc)

" configuration dependent layer and system supervision
* application layer (configuration independent).

54. Specific featf#diihich were realised in the operational system
were:

" survivability by hardware redundancy and software duplication
" adequate response time, by distributed database access
* on-line configuration management.

- 13 -

AC/243(Panel 11) TP/I

- 14 -

55. Concluding, P Y Simonot gave some research recommendations:

" evaluation methods and validation tools for checking survivability

functions

• modelling of distributed systems for performance evaluation

0 development methods.

56. C A DeFranco Jr (US) presented the paper "C2 for the 90's - new
ideas in survivability". The main conclusion was that survivability should
be achieved by "Replication of Function and Dispersion" rather than hardening,
which is very costly and less effective. Consequently two technology issues

are of importance: the distribution of data and survivable communication. He

described three research and development experiments:

* Multi-media Communications Capability (M2C2), an in-house system to

combine diverse physical transmission media to help obtain high levels
of connectivity.

0 Planning in a Distributed Computing Environment (PDCE), a system to

evaluate and demonstrate reconnection strategies.

0 The Survivable Adaptive Planning Experiment, aimed at demonstrating
advanced technologies towards creating a deployable, survivable

strategy planning system in a highly stressed environment.

5.3 Discussion

57. The main part of the discussion revolved round the role of the

user during system development, which was agreed to be essential. The
development method must be chosen accordingly, and prototyping is a promising
way (the incremental development, evolutionary approach). However, "toy"

prototypes are likely to be unacceptable to the military user. These users

are conservative in terms of technology (reliability), so the quality of

prototypes is essential for acceptance.

58. Another topic of discussion was the question of standardization

of object oriented languages. C++ and Smalltalk seemed to be emerging de-
facto standards. Performance is still a problem, but new, more powerful
workstations would significantly improve the situation.

14

AC/243(Panel 11) TP11
- 15 -

CHAPTER 6

6 CONCLUSIONS

6.1 Final Session

Session Chairman: ICA J P Crestin (France)
Rapporteur: P Y Simonot (ORS, Secretary Panel 11)

59. The objectives of the final session were to summarize the
symposium results and to identify possible future research activities based
on the input from the previous sessions. The session chairmen provided a
short overview of the topics covered during their session: these proved to be
significantly complementary.

60. The role of formal methods, which had been raised in several
sessions, and their compatibility with life cycle models were discussed in
depth and a number of issues were identified. Formal methods are supposed to
capture the design process in a formal way. This implies that decisions made
during that process (or at least the result of the decisions) should be
represented in some way. The sensitivity of the outcome to the decision made
is also an issue: can small "perturbations" in the assumptions change the
final product significantly? Another possible issue is the relationship with
prototyping. It was stated that formal methods related to prototyping by
considering a restricted specification, but that there were no fundamental
differences. Formal methods used together with a knowledge-based system
provide an "animation" of the specified system. Formal methods might be used
for critical components (such as security) when prototyping was not possible.

61. It was generally agreed that although Formal Methods are currently
immature, they will become an important tool in the longer term and are a
promising topic for future research. Other emerging technologies include
prototyping, object-oriented programing, knowledge-based systems, persistent
data systems and techniques for software portability. Many different and
promising paradigms are being used. However, the integration of the different
development paradigms can cause problems, particularly in the approach to
system integration.

62. Further work is needed to define the role of prototyping and its
relation to the system development model. An important element for study is
the means of transition from prototype to engineered operational system. The
infrastructure for operational systems seems less well developed than that

15 -

AC/243(Panel 11) TP/1
- 16 -

currently being applied within the prototyping environments. To ease the
transition further work should identify improvements for the operational
infrastructure and how they might be achieved.

63. The development of C31 systems requires specific approaches to
solve problems such as the integration process, the use of commercially
available hardware and/or software including Open Systems standards, the re-
usability of software or more specific military issues such as
interoperability and survivability. The system integration phase is probably
the most critical phase in the C31 system life cycle and tools are needed to
support it. The problems raised are both technical and procurement policy
issues. From a technical point of view, this type of system is very complex
and requires a large variety of engineering disciplines. On the other hand,
taking into account that any software product has defects, the contractor
liability for the system might be an issue. This is just one example of the
wider issues raised by such system development models. Such issues were not
considered as direct research problems.

64. The final session identified several areas to be considered for
future activities of Panel 11, including Formal Methods, Software Re-
usability, Portability and Interoperability, the use of Commercial Off-The-
Shelf Software and Knowledge Engineering in C31.

65. To summarize, a large variety of technologies were presented and
discussed during the symposium. All of them could be used in order to solve
complex problems in a v'ery complex environment such as military information
systems.

6.2 Conclusions

66. Several emerging technologies were identified as having potential
benefit for future military systems. Various technical problem areas were
agreed to need continuing research. In addition, the discussions identified
significant problems concerned with the mapping of new system development
methods and life-cycle models to procurement practices.

67. Military operations place increasing reliance on the use of
software based systems. Systems in which software has a critical part range
from embedded weapons systems to large distributed C31. The characteristics
required of military C31 systems include security, reliability,
interoperability and survivability. This implies certain properties of the
system architecture such as distribution and reconfigurability. System
development is carried out against a background of rapidly developing
commercial hardware technology offering considerable price and performance

-.16 -

AC1243(Panel 11) TP/1
- 17 -

benefits. However, commercial developments in systems engineering have not
kept pace with this hardware technology improvement and do not adequately
address specific military requirements.

68. Research and experimentation has shown the value of an incremental
and evolutionary development process including prototypes. However, in
considering the impact of emerging technology the problems are not entirely
technical. Many are connected with the acquisition culture in defence which
is strongly connected to a waterfall model of systems development. Current
procurement prdctice was felt to legislate against the benefits expected from
incremental and evolutionary development.

69. Thus, the symposium discussions found that it was difficult in the
context of current procurement practice to evaluate the benefits offered by
emerging technology. The involvement of the military sponsor and the future
operational user from an early stage is essential in incremental and iterative
development. No recognized mechanisms exist to ensure this involvement.

70. There is an urgent need for a transition -+rategy, including
consideration of changed procurement practices, in c-der to allow full use of
beneficial emerging technology in the engineering of future military
information systems.

- 17 -

AC/243(Panel 1I)TP/1 -18-

This page has been left blank intentionally

-19- AC/243(Panel 11)TP/1

LIST OF PARTICIPANTS

J L Auboin DGA/DAT/SEFT, Fort d'Issy, 92131 Issy-les-Moulineaux, France
Tel: +33 4095 3485

Ing R Balducci ITALTEL, Defence Telecommunication Division, via Tempesta 2,
20149, Milano
Tel: +39 2 4388 2494 Fax: +39 2 4388 3270

Dr B M Barry Defence Research Establishment, Ottawa, 3701 Carling Avenue,
Ottawa, Canada KIA OZ4
Tel: +1 613 998 2093 Fax: +1 613 990 8401

Miss S G Bond RSRE, Superintendent Computing Division, St Andrews Road,
Malvern, Worcs WR14 3PS
Tel: +44 684 894997 Fax: +44 684 894303 Telex: 339747-8,
Email: sgb@uk.mod.rsre

A Bories ALCATEL ISR, 523 Terrasses de l'Agora, F-91034, EVRY CEDEX,
France
Tel: +33 1 6091 2275 Fax: +33 1 6091 2200 Telex: 600815F

A Bramley UK(Air), Command Computer Officer, HQ Strike Command,
RAF High Wycombe, Bucks

A J Burton RSRE, CS2 Division, St Andrews Road, Malvern, Worcs WR14 3PS
Tel: +44 684 895809 Fax: +44 684 894303 Telex: 339747-8

J Cazin ONERA-CERT/DERI, 2 Av Edouard Belin, 31055 Toulouse Cedes, France
Tel: +33 6155 7055 Fax: +33 6155 7112 Telex: ONECERT 521 5967
Email: cazin@tls-cs.cert.fr

ICA Chezlemas DGA/DCAe/STTE, 129 Rue de la Convention, 75015 Paris, France
Tel: +33 1 4425 8702 Fax: +33 1 4557 7620 Telex: STECTELECAERO

ICA J-P Crestin STCAN, 8 Boulevard Victor, F75015 Paris, France
Tel: +33 1 4059 1063 Fax: +33 1 4059 1932

D W Fikkert TNO Physics and Electronics Laboratory, P 0 Box 96864,
2509 Den Haag, The Netherlands
Tel: +31 70 3264 221 Fax: +31 70 3280 961
Email: dfikkert@ccintl.mod.uk (internet)

C A De Franco RADC/COTD, Griffiss Air Force Base, New York 13441-5700, USA
Tel: +1 315 330 2805 Fax: +1 314 330 3911

Dr K L Gardner Head Defence Research Section, NATO HQ, B-1110 Brussels, Belgium
Tel: +32 2 728 4420 Fax: +32 2 728 4103

AC/243(Panel 11)TP/1 -20-

K Geary Sea Systems Controllerate, MOD, F Block, Foxhill, Bath BA1 5AB
Tel: +44 225 883403 Fax: +44 225 882854

Dr W M Gentleman National Research Council of Canada, Division of Electrical
Engineering, Montreal Road, Building M50, Ottawa, Ontario,
Canada K1A ORB
Tel: +1 613 993 3857 Fax: +1 613 952 7998
Email: gentleman@nrcdee.nrc.ca

G Giannino NATO/NACISA, Head of Ada Support and Control Capability,
9 Rue de Geneve, B-1140 Brussels, Belgium
Tel: +32 2 728 8388 Fax: +32 2 242 1022 Telex: 25931

Dr J Grosche FGAN/FFM, Neuenahrer Strasse 20, D-5307 Wachtberge-Werthhoven,
Germany
Tel: +49 228 85 2288 Fax: +49 228 85 2451 Telex: +49 228 3647

Ir R de Haan Physics and Electronics Laboratory TNO, Information Technology
Division, P 0 Box 96864, 2509 JG, The Hague, The Netherlands
Tel: +31 70 326 4221 Fax: +31 70 328 0961 Telex: 13185

Dr C Holland Air Force Office of Scientifish Research, AFOSR/NM, Building 410
Bolling Air Force Base, Washington DC 20332-6448, USA
Tel: +1 202 767 5025 Fax: +1 202 767 0466

F S Lamonica USAF/RADC/COEE, Griffiss Air Force Base, New York 13441-5700, USA
Tel: +1 315 330 2854 Fax: +1 315 330 3911

C Lewis RARDE, CAI Division, Fort Halstead, Sevenoaks, Kent TN14 7BP
Tel: +44 959 3222 2508 Telex: +44 959 32971

M J Looney ARE, AXC Division, Porsdown, Portsmouth, Hampshire P06 4AA
Tel: +44 705 21999 x2330 Fax: +44 705 21999 x3543

J Martel RARDE, CA2 Division, Fort Halstead, Sevenoaks, Kent TN14 7BP
Tel: +44 959 3222 x3956 Fax: +44 959 32971

or DREV, 2459, Pie XI Boulevard North (P 0 Box 8800), Courcellette,
Quebec, Canada GOAIRO Tel: +1 418 844 4698

R B G Mawby NACISA, NATO HQ, UK National Experts Office, BFPO 49
Tel: +32 2 728 8248 Fax: +32 2 242 1022

Prof J McDermid University of York, Heslington, York Y01 5DD
Tel: +44 904 432782 Fax: +44 904 432767

Dr Morganti ITALTEL, Central Research Laboratory, 1-20019 Settimo Milanese,
Italy
Tel: +39 2 43887353 Fax: +39 2 4388 8462 Telex: +43 314840

Dr N E Peeling RSRE, CS2 Division, St Andrews Road, Malvern, Worcs WR14 3PS
Tel: +44 684 895314 Telex: 339747-8 Fax: +44 684 894303
Email: peelingthermes. od.uk@relay.mod.uk

-21- AC/243(Panel 11)TP/1

Dr R Pendeville Shape Technical Centre, P 0 Box 174, 2501 CD The Hague,
The Netherlands
Tel: +31 70 314 2274

M Perre TNO Physics and Electronics Laboratory, P 0 Box 96864, 2509 JG,
The Hague, The Netherlands
Tel: +31 703 26 4221 Fax: +31 703 28 0961

P R H Place Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213-3890, USA
Tel: +1 412 268 7746 Fax: +1 412 268 5758

Lt Col M Italy MOD, SEGREDIFESA, via XX Settembre, 123/A, 00100 ROME
Sciorella Tel: +39 6 4817805 Fax: +39 6 481 4264 Telex: DTMT-I 613436

Dr C T Sennett RSRE, CSI Division, St Andrews Road, Malvern, Worcs WR14 3PS
Tel: +44 684 895184 Fax: +44 684 894540 Telex: 339747-8

Dr L N Simcox RSRE, AD4 Division, St Andrews Road, Malvern, Worcs WR14 3PS
Tel: +44 684 894693 Fax: +44 684 894540 Telex: 339747-8

Dr P Y Simonot Defence Research Section, NATO HQ, B-1110 Brussels, Belgium
Tel: +32 2 728 4759 Fax: +32 2 728 4103

I J Sinclair Real Time Engineering Limited, Capital House, 20 Park Circus,
Glasgow G3 6BE
Tel: +44 41 322 9400 Fax: +44 41 331 1094

Dr D R Smith Kestrel Institute, 3260 Hillview Avenue, Palo Alto,
California CA 94304, USA
Tel: +1 415 493 6871 Fax: +1 415 424 1807
Email: smith@kestrel.edu

Mrs M Stanley RSRE, CS2 Division, St Andrews Road, Malvern, Worcs WR14 3PS
Tel: +44 684 894576 Fax: +44 684 894303 Telex: 339757-8

Dr W Storz Forschungsinstitut fur Funk und Mathematic,
Neuenahrerstrasse 20, D-5307 Wachtberg-Werthhoven, West Germany
Tel: +49 228 852 511 Fax: +49 228 852 451 Telex: +49 228 3647

V K Taylor DND/CRAD, Department of National Defence, Ottawa, Canada KIA OK2,
attn: DRDCS-2
Tel: +1 613 995 8008 Fax: +1 613 996 0038

ICA B Vors DGS/DRET, 26 Boulevard Victor, Paris, F00460 Armees, France
Tel: +33 1 4552 4666 Fax: +33 1 4552 4681 Telex: OTEPA 204648F

T A 0 White RSRE, St Andrews Road, Malvern, Worcs WR14 3PS
Tel: +44 684 894951 Fax: +44 684 894540 Telex: 339747-8

Dr J C Wileden University of Massachusetts, Computer and Information Science
Department, Amherst, Massachusetts 01003, USA
Tel: +1 413 545 0289" Fax: 41 413 545 1249

AC/243(Panel 1I)TP/1 -22-

This page has been left blank intentionally

-23- AC/243(Panel 11)TP/1

TABLE OF CONTENTS

Pages No.

A. ENGINEERING FOR THE SYSTEM LIFE CYCLE

A.1 Management and Control of Prototyping as part of A.1.1 - A.1.23

the Development Life Cycle

A.2 Engineering the Process of Software Evolution A.2.1 - A.2.6

A.3 AMEP: A Case Study in Object Oriented Systems A.3.1 - A.3.12
Engineering

A.4 Transformational Implementation of JSD Specifications A.4.1 - A.4.17
in Smalltalk-80

A.5 Formal Specification and Requirements A.5.1 - A.5.10

A.6 The "Spiral Model", Some Problems, Many Solutions? A.6.1 - A.6.19

B. KNOWLEDGE-BASED SYSTEMS

B.1 Automating the Development of Software B.1.1 - B.1.10

B.2 QUEST - Quality of Expert Systems B.2.1 - B.2.9

C. SOFTWARE TECHNOLOGY

C.1 Ten15 - A High Integrity Kernel for Software C.1.1 - C.I.9
Engineering Applications

C.2 Formal Program Developments C.2.1 - C.2.10

C.3 Automated Support for Development and Evolution C.3.1 - C.3.11
of Complex Software Systems

C.4 Object Oriented Languages as the Answer for C.4.1 - C.4.10
Interoperability and Incremental Development of
Command and Control Information Systems

D. C31 SYSTEMS DEVELOPMENT

D.1 A Structure for Distributed Command and Control D.1.1 - D.1,12
Information Systems using Commuercially Available
Software

D.2 Army C31 System Software Design: A Case Study D.2.1 - D.2.14

0.3 C3 for the 90s - New Ideas in Survivability 0.3.1 - 0.3.13

-23-

N ATO0 UN C LA SS I F I E DII

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:

UNCLASSIFIED/UNLIMITED
AC/243(Panel 11)TP/1 5. Date: 6. Total Pages:

15.04.91 23
7. Title (NU):

Management and Control of Prototyping as Part of the Development
Life Cycle

8. Presented at:
AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

g. Author's/Editor's:
M. J. Looney - I.J. Sinclair

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
ARE-PN Real Time Eng. Defente Research Section
Portsmouth Capital House NATO Headquarters
P06 4AA 20 Park Circus B-1110 Brussels
United Kingdom Glasgow Belgium

United Kingdom (Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Oescriptors:

SOFTWARE LIFE CYCLE - PROTOTYPING - MANAGEMENT AND CONTROL

14. Abstract:

This paper shows how the inclusion of a prototyping approach in
the life cycle paradigm for software development of large complex
systems need not result in an uncontrolled process. The procedures
for using a prototype on which to carry out risk reduction can be
specified and the necessary documentation generated. These stages
have been Identified and the structure of the documentation is
indicated in relationship to existing development standards such as
DoD-STD-2167A.

N AT 0 U N C'L A SSI F I E D

UNCLASSI FI ED/UNLI MITED

A.1.1 AC/243(Panel 11)TP/1

Management and Control of Prototyping

as part of the

Development Life Cycle

A uthors.

M.J.Loonev.
Head of Software Engineering Section (AXC4)
Command & Control Division
ARE-PN
Portsmouth P06 4AA
Tel 0705 219999 (Ext 2330)
Fax 0705 219999 (Ext 35431

I. J. Sinclair
Real Tire Engineering Ltd
Capital House
20 Park Circus
Glasgow G3 6BE
Tel 041 332 9400
Fax 041 331 1094

UNCLASS I F I E D/UNL I MI TED

UNCLASSI FI ED/ UNLIMITED

AC/243(Panel 1l)TP/1 A.1.2

IakgrLConicni

1.0 Introduction .. 1
2.0 Background .. I
3.0 Life cycles .. 2
4.0 Prototyping ... 3

4.1 What is 'Rapid Prototyping' ? ... 4
4.2 Why Prototype? .. 4
4.3 Identification of Derived Requirements 4
4.4 Feasibility of Non-functional Requirements 5
4.5 Extent of Protoryping ... 5
4.6 Procurement Issues .. 6
4.7 Quality of Prototypes .. 6
4.8 When and How to Stop Prototyping .. 6
4.9 Advantages and Disadvantages of Prototyping 6

4.9.1 Advantages claimed for prototyping 7
4.9.1.1 It saves money in the long term 7
4.9.1.2 It reduces risk ... 7
4.9.1.3 It leads to a better system 7
4.9.1.4 It provides early visibility which is psychologically
advantageous .. 7

4.9.2 Disadvantages of protoryping which have been perceived 7
4.9.2.1 It costs more in the short term 7
4.9.2.2 It risks suffering the Prototype Paradox 7

5.0 The Prototyping Life-Cycle ... 8
6.0 Processes and Documents .. 8

6.1 Initial System Requirements Specification 9
6.2 Prototype Decision Process ... 9
6.3 Prototype Strategy Document .. 9
6.4 Prototype Implementation Plan ... 9
6.5 Prototype Evaluation Description and Plan 9
6.6 Prototype Construction Process ... 9
6.7 Prototype Evaluation Process ... 9
6.8 Prototype .2valuation Reports ... 10
6.9 Requirements Revision Process ... 10
6.10 Revised System Requirements Specification 10
6.11 Strategy Reassessment Process ... 10
6.12 System Requirement Specification .. 11

7.0 C onclusion ... 11
8.0 References ... 12

UNCLASS I F I ED / UNL I MI TED

17

I UNCLASSIFI ED/UNLIMITED

A.1.3 AC/243(Panel I1)TP/1

1.0 Introduction

The conventional 'waterfall' (Ref 1. 2) approach has been applied to large system development with a marked lack
of success over the last decade or more. Over the last few years there have been several attempts to change the
paradigm and to increase the emphasis on the 'front end' of the process, with the use of prototyping as a possible
means of improving the resulting system. However there are several perceived shortcomings in the adoption of this
approach the main one being the problems associated with the management and control aspects. Planning and control
of prototyping is considered to be more difficult because the form of the evolving system, the changes which will
occur, and the user requirements, can be largely unknown at the outset. This lack of explicit structure and form to the
planning and control of the process is said to increase the difficulties of the management and can result in inadequate
documentation and testing.

This paper does not seek to prescribe methods for prototyping or conventional development, but instead
concentrates on themes which are central to the success of the marriage between them:
.how can information be transferred between the two types of process?
.can an approach be found which supports management visibility in a prototype without destroying the very nature
of the process (i.e. experimentation t "eed).
-when can prototypmng be justifieu. and how?
- how can a project transitioT, s, cessfully from one phase to the other?

Having viewed the negative impacts which can result from management insistence on slavishly following
standards in conven.onal development processes. it is hardly surprising that there is a natural reluctance within the
prototyping lobby to see "standards" imposed on the prototyping phases. Clearly the application of a "waterfall"-type
standard to a prototype is wholly inappropriate, and so other solutions must be sought.

The harsh reality is that prototypes must be commercially viable. They require to be justified, to be managed, and
to achieve the prime objective of contribuuing to success in a cost-effective manner, by discovering and disseminating
requirements and solutions which demonstrably save ume and effort or improve functionality/performance in lauer
stages of development.

The paper was produced in the context of A ork being undertaken in looking at DoD-STD-2167A (Ref 3) and
trying to identify the ways in which the standard could be made more palatable to those advocating rapid prototyping,
while retaining the standard's ethos of a strong emphasis on visibility to permit management control.

2.0 Background

In the 1970's many attempts at producing complex real-time systems were unsuccessful. It was very difficult to
point to significant success stories, while projects seemed abundant which were viewed by their instigators as
basically disastrous in terms of cost and time scale overruns or in terms of unacceptable performance in functionality
and/or responsiveness. Engineering managers of say. overall shipbuilding programmes, came to view the
sophisticated computer systems elements of the programme as major risk areas and ones over which they could effect
frustratingly little management control.

Lack of'visibility" was perceived as the major problem at that time and paper such as Ref.4 talked of the need to
dispel the image of softwe as a "black art" and to enforce engineering disciplines on it which would generate the
visibility required for management control. A strong emphasis was placed on the need to plan clearly the sequential
stages which would lead to the final system and to generate documentary evidence at each stage, be it design
document, test strategy or performance analysis. to permit assessment by a third party of whether or not progress was
to plan.

UNCLASS I F I ED /UNL I M I T ED

UNCLASSI FI ED/UNLIMI TED

AC/243(Panel 11)TP/1 A.1.4

Hence standards such as DoD-STD-21 67A evolved. The traditional "waterfall" model of the software life cycle
lent itself extremely well to the identification of sequential stages and so was readily adopted. Documents required at
each stage were defined in great detail, in the case of DoD-STD-2167A (through its supporting DIDs) to the level of
detailing the exact format of the documents. Enforcement of such standards was seen as the panacea for the problems
of the software industry.

However, in the 1980's, the continuing attempts at producing complex real-time systems do not seem to have
created an improved success rate. Engineering managers who have enforced the standard now find significant
documentary visibility being generated, but somehow the problems of cost escalation, " 7 scale slippage and under-
performance have not gone away. This may in part be due to the requirements and ex- rauCons of real-time systems.
particularly in the area of responsiveness, growing dramatically in line with advances in hardware technology. It
must, however, at least in part also be due to adherence to the standard being insufficient to solve the problems, or to
the effect of invoking the standard not being as envisaged by its authors. It is the opinion of the authors of this report
that both these condiuons apply to a degree. The former in that controlled prototyping is a necessary adjunct, and the
latter in that the standard's strong emphasis on document format rather than content has led to documents becoming
an end in themselves, rather than a means to an end, in a way never envisaged by its authors.

3.0 Life cycles

In a document produced by ISO there is a list of activities under "reference model for software development" and
within that list there are five distinct life cycles. The acceptance of the classical approach to the software life cycle
represented by the intemauonally known 'waterfall* diagram, with its continual iteration and feed back from any level
to any other has not been successful.

In the UK the DTI and the NCC produced the STARTS GUIDE (Ref 5) and introduced their version which bent the
waterfall in the middle and was known as the "V diagram" .This also explicitly introduced the links between various
decomposition stages with the testing and acceptance during the appropriate integration phase. However the basic
problem with the waterfall diagram remained.

In the papers written in the early 80s. Balzer. Cheatham and Green (Ref 6) identified a new paradigm for the
development of software. In this they identified that the basic approach adopted so far had been flawed in that there had
been bittle or no computer support for the processes involved due to the relatively low cost of people against that of
the expensive early computers.The strategy they put forward was that the development life cycle should be based on
the use of automation to the highest possible level and that it should be split into two basic segments. The first
representing the requrements analysis stage which encompassed the capturing of the requirement, the te of
probtoyping techniques to "validate" that the requirement was correct and that it represented what the end user had
asked for. The output from this stage being a model of the requirement as a formal specification repsnted by the
pratotype. The second stage would be supported with tools capable of automatically generating a program to satisfy
the formal specifiauon. This would remove the manually element in the code generation and avoid dhe need for
intennedae design, code and testing. All enhacemenu would be carried out at the first stage using the prototyping
approach to identified the ramifications of the changes.

Alan Davis in his paper on comparing life cycle models (Ref 7) indicates ta there is a long way to go to
achieve the "ultimate" model that can identify she requfements before the ser really knows what he wants, but, even
so, sune changes we needed. The adapion of a pmoMtyPg /evaluation /evolution appoech does now apper o have
a lot of support, including that of the Report of the Defense Science Dowd Task Force on Military Software (Ref 8).

The approach introduced by Barry Boehm (Ref 9) does seem to be moving in the this direction. In the approach

adopted there has been a radical look at what is taking place and what the needs ae to ahie an acceptable system,

UNCLASSIFI ED/UNLI MITED

UNCLASS I F I ED / UNL I M I TED

A.1.5 AC/243(Panel 11)TP/1

using some of the results from work carried out on a rapid prototyping approach and comparisons with conventional
development (Ref 10). In these, it was seen that there was a significant reduction in the time taken to produce a
working system adopting the approach of continual modification of a prototype against the standard requirements
specification/build approach. The use of conunuous evaluation and risk analysis as an integral part of the process
provides a much better basis on which to make the necessary decisions over options that may be open or which route
may be most cost effective. When a prototype has been evolved to a satisfactory level and further refinement is
considered not cost effective, then it is possible to engineer it to achieve the final product. The philosophy is simple,
build a prototype. evaluate it-, evolve it when its good enough, engineer iL

The interesting aspect to this is that when the comparisons were carried out between the protoryping approach and
the specification approach by several university groups, concern was expressed with the prototyping approach because
they saw difficulues with the maintenance and enhancement of the system. The conclusion being that there was a
need for further research in tius area.

4.0 Prototvuing

It is easy to sympathise with the programme manager who, having faced major problems with software in his
projects in the 1970's, duly enforced DoD-STD-2167A to achieve better visibility on his project in the 1980's, then
reads in the Report of the Defense Science Board Task Force on Military Software (Ref.8) that DoD-STD-2167A
'continues to enforce exactly the document-driven, specify-then-build approach that lies at the heart of so many DoD
software problems'.

When he reads further in this report that the solutions to his problems are now seen as rapid prototyping
involving a 'lash-up of handy componcnts he might be forgiven for despairing. How is he to control the progress of
this 'lashing-up of handy components' and to monitor what it has achieved? Surely the standard was not wrong in
enforcing visibility to permit manaccmcnt control?

The rauonale behind any approach to introduce rapid prototyping to DoD-STD-2167A should be governed by the
view that the basis for the standard is fundamentally sound in terms of the need for support in the procurement of
large complex systems under contraCL The standard has been widely used and feedback from this should be used
constructively to improve it rather than destructively to discredit it. Having spent considerable effort (and money) on
developing DoD-STD-21 67A the DoD may well lose considerable credibility if it now adopts the stance that the
basis for the standard was wrong and that it is necessary to effectively discard it and start again. A more credible
approach is to adopt the position that:

(a) The standard's basis of enforcing high levels of visibility to permit management control is
fundamentally correct but the emphasis on mandatory documentation in mandatory format has been too
extreme, leading to unintended results.

(b) Software is still evolving as an engineenng discipline and the standard must evolve with it. The Defense
Science Board Task Force report asserts tat "We believe that users cannot, with any amount of effort and
wisdom, accurately describe the operauonal requirements for a substantial software system without testing by
real operators in an operational environment, and iteration on the specification. The systems built today are
just too complex for the mind of man to foresee all the ramifications purely by the exercise of the analytic
imagination". This asseruon, and its implication that prototyping must become a prominent feature of
complex system developments, is now gaining increasingly wide acceptance. Accordingly, DoD-STD-2167A
must evolve to encompass this.

Point (a) above implies the need for clarification and some relaxations to the documentation requirements of the

Poim (b) above implies additions to the standard to covet the rapid.pnototyping approach.

UNCLASS I F I ED /UNLIM I TED

"_

UNCLASSIFI ED/UNLIMITED

AC/243(Panel 11)TP/1 A.1.6

This work attempts to provide a suitable addition, but in such a fashion as to comply with the standard's ethos of
a disciplined engineering approach yielding high levels of visibility to permit management control.

Before progressing further it is essential that several major issues associated with the use of a prototyping
approach are clarified. The following paragraphs indicate the position adopted by the authors of this paper on these
matters.

4.1 What is 'Rapid Prototyping'?

The frs issue to be resolved is "What exactly is a prototype?". The answer is that the term appears to be used
in a very wide-ranging sense varying from a very simple, cheap-to-produce system created for demonstration
purposes (probably the most common interpretation) to an extensive, very formal system where the prototype
in fact becomes the embodiment of the production system requirement as advocated for example in the forward-
looking paper by Balzer, Cheatham and Green. The Defense Science Board Task Force report offers the
following description and it is fair to say that any approach which broadly matches it is following a "rapid
prototyping' approach:

"As people have recognised that the requirements, and especially the user interface, require iterative
development, with interspersed testing by users, there has developed a technology for constructing "rapic"
prototypes. Such a prototype typically executes the main-line function of its type, but not the countless
exceptions that make programming costly. It usually does not have complete error-handling, restart or help
facilities. The prototype is often built using a lash-up of handy components that swap performance for rapid
interconnectability. It is usually run on a computer that is bigger and faster than the target machine."

This description is not unreasonable though its two final sentences are more appropriate to user-interface
prototyping than performance prototyping which can be used as the basis for a more evolutionary approach.

4.2 Why Protot%2pe?

It is very important before embarking on any prototyping exercise to clearly establish the purpose of the
exercise. Prototyping must not become something that is mandated to be done because it is required by a
standard but rather something that is done because good engineering judgement suggests it is likely to be
beneficial to the project in terms of those criteria against which the success of the project will be measured.
This usually means some combination of reducing cost, time scale and/or risk.

Prototyping must always be associated with resolving some uncertainty and will usually be associated with
either clarifying user requirements or establishing feasibility either technical or financial and thereby reduce the
risk. Prototypng will cost money and take time, so careful consideration will require to be given as to its
justification. Usually systems for which it will be effective are systems which are breaking new ground either
in terms of user requirement or new technology (if a previous similar system is in existence cannot the lessons
that would be learned from a prototype be learned instead from it?).

4.3 Identification of Derived Reouirenients

A very stmg justification for the use of prototyping is to identify "Derived Requirements" in very complex
systems. These are requirements which are initially invisible to the end-user when specifying the system but
are a function of the way the user's specified requremints am implemented.
For example. consider the case of a ship-wie command and convol system for which certain levels of
reliability and vulnerability require to be met as well as defined rates of system responsiveness. If, to satisfy

UNCLASSI F I ED/ VNL INI TED

UNCLASSIFI ED/UNLIMITED

A.1.7 AC/243(Panel 11)TP/1

the system's requirements for reliability and vulnerability, the designers opt for a distributed system with
redundant nodes, then performance requirements for the underlying network and distributed data base become
requirements denved from the initial system responsiveness requirements. If these derived requirements are not
satisfied the system will not perform, even though these requirements were not directly visible when the
system was originally specified. The feasibility of satisfying these derived requirements therefore becomes
instrumental in establishing the feasibility of satisfying the original requirements. This is very much the
domain of prototyping: "learning about the hidden requirements".

4.4 Feasibility of Non-functional Requirements

Reliability. availability, maintainability are examples of what can be termed 'non-functional' requirements.
They are requirements which can be stated extremely simply, maybe in a single sentence, by end-users perhaps
unaware of the enormous impact they can have on the technical or financial feasibility of implementing a
compliant system. For example the system will have 99.9% availability' is extremely easy to write, but
reducing the figure by a very small amount could completely change the technical/ financial feasibility ot an
otherwise identical project. These requirements are often the hidden factors behind development problems, as to
retrofit this type of rcquiremcnt actually means start again, they can not be added once development is
underway

A paper-bascd feasibility study may give satisfactory answers to such questions prior to embarking on a major
programme but oftcn protot)yping wid be necessary to establish with confidence whether the technology exists.
and a system design can be produced. to satisfy the non-functional requirements. In this type of situation it
may be cost effective to 'save" the prototype and build on it rather than discarding it

4.5 Extent of Prototvin,

In a complex system it is likcly that uncertainty will only exist concerning certain aspects of the system.
Again prototyping should not be done simply because it is mandated by a standard. Engineering judgement
must be used to localise prototvping activities to those areas where the information gained through the exercise
is likely to prove most bcneriii to the project and be an effective use of resources.

Examples of two areas of systems in which prototyping is often an effective use of resources are:

(a) in clarifying the user interface.
(b) in establishing an underlying system infrastuucture.

Unsatisfactory user interfaces and unsatisfactory response times are perhaps the two commonest user
complaints about complex real-time systems.

The authors of this report subscnbe to the view advanced by the US Defense Science Board Task Force that in
a complex system a satisfactory user interface cannot be established without testing by real operators in an
operauonal environmenL No amount of imagination will substitute for actual feedback from end-users
evaluating a prototype in the process of defining what a user interface should, and should not, do.

The authors also believe that solving the problems of how the underlying system infrastructure (for example,
the distnbuted database and communications network in the Ship Command and Control System discussed
earlier) is going to satisfy the systems responsiveness requirements. is such a central issue to so many of
today's complex real time systems that this will be a clear candidate for prototyping activity in most large
systems.

UNC LASS I F I ED /UNL I M I TED

UNCLASSIFI ED/UNLIMITED

AC/243(Panel 11)TP/1 A.1.8

4.6 Procurement Issues

It is interesting to note that a recommendation of the U.S. Defense Science Board Task Force report is:
"For major new software builds, we recommend that competitive level-of-effort contacts be routinely let for
determining specifications and preparing an early prototype".

If this recommendation is implemented, then some reasonably formal framework for conducting the
prototyping activity, as advocated here, will be of assistance in enabling the results of competing contractors
to be compared.

4.7 Quality of Prtotypes

A fundamental issue which must be addressed in any prototyping exercise is the planned life span of the
prototype. Is it a quick lash-up, which will be discarded as soon as the desired lessons have been learned from
it'? Or. is it a very useful embodiment of the requirement which is to be used as a means of evolving into the
production system?

There is no simple rule as to what quality of software and documtntation should be produced for a prototype.
but asking quesuons such as the ones above should enable the decision maker to make a practical judgement.
In the extreme case of say a prototype for a macor weapons system which would have serious consequences
should it fail to perform even to a small degree, we would advocate that the prototype itself be developed to
standards at least as stringent as DoD-STD-2167A. At the other extreme, where a relatively simple system user
interface has been 'lashed up' to assist in it- definition, with the full intent of discarding the prototype once it
has served its purpose. then it would be acceptable to apply minimal quality standards for software and
documentation to the prototype development.

The quality of software and documentation required for a prototype must therefore relate to its purpose,
parucularly in terms of life span and use.

4.8 When and Hnw to Stop Prototyping

Prototyping is normally an iterative process. and as with most iterative processes, it is only useful if the
process converges to some acceptable end-point. Prototyping is learning about the unknown and can be very
interesting leading to the danger of more iterations being carned out than ae actually beneficial to the project.
The best guidance that can be given is that after each iteration, the same cnteria which were originally used to

decwe whether or not to prototype should be used to decide whether another iteration is justified. This
reassessment will need to take account of the amount of available resources (both financial and time scale
related) which have alrehdy been committed to the protoryping activity.

4.9 Advantages and Disadvantages of Prototvping

To conclude this secuon on "major issues" the following is a summary of advantages claimed for prototyping
tempered by some disadvantages which are likely to be encountered when the siable step is taken from the
philosophy of reports such as this to the harsh realiues of established procurement paths in the real world.

UNCLASSI F I ED/UNL IMI TED

I. m m mm l : - - m i (mml _

UNCLASSIFIED/UNLIMITED

A.1.9 AC/243(Panel 11)TP/1

4.9.1 Advantiges claimed for prototyping

4.9.1.1 It saves money in the long term

The money invested up-front in the prototyping activity is likely to be repaid many times over by
savings through not having to do major rework on the production systems to sausfy the end-user.

4.9.1.2 It reduces risk

If some aspect of the system is not feasible either technically or financially then prototyping can identify
this early in the project thereby avoiding the risk of unnecessary major expenditure.

4.9.1.3 It leads to a better system

The system is likely to be better in the sense that end-users are more likely to be satisfied, particularly
with the user-interface aspects.

4.9.1.4 It provides early visibility which is psychologicallv advantageous

This is an aspect of prototyping which should not be under played. The encouragement is considerable, to
both end-client and the team developing the system, when some version of the system they are trying to
create, albeit in prototype form. becomes visible and tangible.

4.9.2 Disadvantages of prototN3ing which have been Mrceived

4.9.2.1 It costs more in the short term

The harsh reality is that this will often prevent prototyping taking place. In a world where procurement
processes are dominated by annual budget constraints a project which seeks significant up-front
expenditure (to save money 3 or 4 years later) risks cancellation whilst one seeking smaller amounts of
funding based on a view through "rose-unted spectacles" of the position in 3 or 4 years time is much
more likely to be approved.

4.9.2.2 It risks Sufferin, the Prntott'e Paradox

If a prototype is not perceived to be very good. i.e.. not particularly representative of the final system,

then the client will say "What a waste of money. Let's not do it again". If a prototype is perceived to be

good. then the client may say "Excellent. We'll have one of those. How fortunate we won't have to spend

any more money".

The Prototype Paradox is most easily overcome with an 'educated' client who has seen the problems before and is

aware of the major issues surrounding the use of prototyping.

UNC L AS S I F I E O / UN L I M I T E D

UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 A.1.1O

5.0 The Prototyping Life-Cycle

A proposed Prototyping Life-Cycle model has been produced with a view to integration with DoD-STD-2167A,
and those familiar with that standard will recognise some intentional similarities in nomenclature.

There have been many benefits seen in the use of KBS type development facilities with their closely knitted sets
of tools allowing the generation of rapid prototypes which can be tried and assessed and it is considered essentially
that this ability to experiment in order to identify the risk associated with various options open at the start of a large
software based project become part of the accepted life cycle. A major problem with adopting this approach is the lack
of management control and, as indicated earlier, the limited prospects for maintenance and enhancement which result
from the lack of detailed information at the end of the prototype evaluation on what has been done and why.

Our approach uses the basic structure indicated in the spiral model, it includes the use of a prototype followed by
evaluation and risk analysis. It then repeats the process evolving the prototype until an acceptable level of risk is
identified in the evaluation and the product can be engineered from the information so far obtained. The whole process
may initially run as a set of parallel prototypes which are examining different aspects of the system and these can be
brought together on successive iterauons. The approach also identifies the documents which would be needed at the
appropriate points as part of the management/control process necessary for the contractual procurement of a large
system and to allow for the through life maintenance and enhancement of any large system.

In creating this model and writing its description in a format compatible with DoD-STD-2167A the authors are
conscious that their work may face the cnticism (as DoD-STD-2167A has) of being too strongly "document driven".
The authors wish to strcss that the grand titles given to the proposed documents, their acronyms and their format are
entrely secondary to thcLr content and ability to satisfy their purpose of describing and recording useful information
about what has been done or will be done. If certain documents were to be retitled or perhaps combined into one for
ease of use on a part.cular proiect this would cause the authors no concern whatever. The reader is asked to bear in
mind this idea of documcnts as tools to be used as and when appropriate, rather than driving forces, in reading the
description which follows. It should be stressed that the documentation standards adopted for any project should not be
the driving factor in the procurement. a project must tailor any standard to meet its own needs.

If we take the final quadrant of the spiral model to be the equivalent of the "waterfall" model which may be
initiated at any convenient point in the process, then the existing requirements for management and control are already
laid down for interpretation in 2167A. As this identifies the System Requirements Specification as the initial
document from which the waterfall flows. The equivalent document in the new schema is the Initial System
Requrements Specification (ISRS) which is the input to a decision making process whether or not to prototype
(Prototype Decision Process) which will assess the options open at the outset in terms of the alternatives, the risk.
the constraints and the obtectives. If the decision is not to prototype the ISRS becomes the SRS and DoD-STD-
2167A becomes applicable as normal. If the decision is to prototype then a spiral is entered which may be
circumnavigated several times before proceeding to the waterfall!

6.0 Processes and Documents

This shows the processes which require to be cared out and the documents which require to be produced during
prototyping activity. The stages are as follows.

UNCLASS I F I ED /UNL I MI TED

UNCLASSIFIED/UNLIMITED

A.1.11 AC/243(Panel 11)TP/1

6.1 Initial System Requirements Specification.

The Initial System Requirements Specification document (ISRS) corresponds to the System Requirements
Specificauon (SRS).

6.2 Prototye Decision Process.

The contractor shall address whether or not prototyping should be applied to the system as defined in the ISRS.
This decision shall be based on the level of risk associated with the system, based on such factors as:
complexity of the system, the extent to which it is breaking new ground with regard to functionality and use
of technology, the level of clarity of definition in the ISRS of areas such as the User Interface. and the
constraints which must cover aspects of cost, and time scale. If the decision reached is that prototyping is not
appropnate then the reasons for this decision shall be documented, the ISRS shall become the SRS and
development shall proceed as per the accepted model. If the decision is that prototyping is appropriate then the
following shall be produced/carried out.

6.3 Prototype Strategy Document.

The PSD shall contain at least the following: the reasons why prototyping is being undertaken and the purpose
of the prototype; the extent of the prototype (i.e., which areas of the full system are being prototyped). the
expected life span of the prototype and the quality levels to which prototype software and documentation shall
be produced and maintained. Thew standards will determine whether this is a major formal process, possibly
itself following the traditional waterfall life-cycle, or a quick "lash-up" the details of which will soon be
unimportant.

6.4 Prototpe Implementation Plan,

The PIP shall contain at least the following: a definition of the prototyping activities to be carried out: a
schedule of events and allocauon of resources for the waork being undertaken.

6.5 Prototvoe Evaluation Description and Plan.

The contractor shall produce one or more Prototype Evaluation Description documents which will outline
activities to be performed in evaluating the prototype and a Plan which will allocate responsibilities for
conducung various facets of the evaluation.

6.6 Prototpe Construction Process,

The contractor shall carry out the constrcuoin of the prototype in accordance with the Prototype
Implementation Plan and to the standards defined by the Prototype Strategy Document.

6.7 PrototYne Evaluation Process,

Evaluation of the pmuxype shall be carned out guided by the Prototype Evaluation Descriptions and the
results of the evaluation recorded in one or more Prototype Evaluation Reports (PER's)."

UNCL ASS IFI ED /UNL I MIT ED

UNCLASSI FIED/UNLIMITED

AC/243(Panel 11)TP/1 A.1.12

(This is the most important stage on the prototyping life cycle, the stage at which the important lessons will
be learned. The evaluation will normally be carried out by end-users of the system if functional aspects such as
the user-interface are under examination. Some aspects of the evaluation may be carried out by systems
specialists, such as monitoring the traffic on a communications line to try to understand the likely performance
under worst case conditions or to experiment with different configurations.
The Prototype Evaluation Description(s) and Plan will have outlined the various evaluation exercises and
responsibilities for carrying them out. The term "oudined" is used to emphasise that a certain amount of
freedom must be given to the evaluator to use his judgement in what is essentially a learning exercise. The
Prototype Evaluation Descriptions must be viewed as tools intended to steer and focus the evaluation rather
than as detailed instrctions to be followed to the letter.)

6.8 Protot= Evaluation Reports.

The contractor shall produce one or more Prototype Evaluation Reports which shall encapsulate and
communicate, in terminology understandable to both system user and system implementor, the deficiencies and
strengths of the prototype and recommendation for changes. additions or clarifications to the system
requirements.

(A crucial aspect of the evaluation process is that the lessons learned must be communicated to those who can
apply the knowledge to the benefit of the production system. There is much to be said for joint participation in
evaluation activities by system end-users and system implementors. Human intercommunication is such that
more will be learned by implementors in terms of "understanding the system" through dialogue with end-users
in a "hands-on" situation, than through written communication via some form of evaluation reports.
Nevertheless, it remains necessary to produce such reports to preserve as well as possible the information
gained for the future benefit of non-parucipants in the prototyping work.)

6.9 Requirenents Revision Process.

On completion of the Prototype Evaluation Reports the contractor shall assimilate these reports and revise as
necessary the ISRS (or RSRS if more than one prototype cycle has occurred) to reflect the new information
which has been learned. This revision will create a Revised System Requirements Specification (RSRS).

(Some statements made will be precise and quantifiable and able to be fed directly back into a revised System
Requirements Specification. e.g.. "This display is confusing because X is adjacent to Y. It would be much
improved by rcorganising the informauon displayed like this...... Other statements will be much less tangible.
e.g., "the system is difficult to use because..." hopefully dialogue between implementor and user will enable
the implementor to write down more clearly the ways in which the user believes the system can be improved.)

6.10 Revised Svtem Requirements Siecificanon.

The RSRS may become the SRS or be further revised dependent upon the outcome of the Strategy
Reassessment Process.

6.11 Strategv Reassessment Process.

On completion of a cycle of prototyping the contractor shall reassess the segy for protoyping and decide
whether further prototyping is justified using the same criteria as used for the original Prototype Decision
Process. If the risk level is low enough then no fthe prototyping need take place and the RSRS shall

UNC LASS I F I ED UNL I M I T E D

e. I.?

UNCLASSI FIED/UNLIMITED

A.1.13 AC/243(Panel 11)TP/1

become the SRS and development shall proceed. If further prototyping is to take place then the PSD and PIP
shall be revised accordingly prior to the next phase of prototyping.

6.12 System Requirement Secification.

The output of the prototyping activity shall be an SRS and supporting PER's which give sufficient definition
and information about tie System to let development proceed, as per the traditional "waterfall" life-cycle model
with a minimum of need for iteration.

7.0 Conclusion

In moving on from the "waterfall" life cycle model. which has been shown not to be ideal for the procurement
of large systems, to a paradigm which will carry forward some of the features which have been accepted as
essential. such as the need for control and the ability to measure or evaluate progress against the objectives
identifies at the outset. The premiss has been to evolve and adapt rather than attempting to propose revolution.
While in some ways it can be considered as being a radical change to the old method in its move from a clear cut
beginning with a statement of requirements which could be taken and "manipulated" to produce a "satisfactory"
system for the end user. to one which emphasises that the start is very much a "grey" specification and that it
rcquircs considerable clarification. there is still a need for certain information which must be available. This
information is necessary in any large pro ect if management are to carry out their task successfully, even more so
when contract conditions must be meet.

In the paper a structure has been imposed on the use of a prototyping approach and a set of documents and
processes identified which will provide the information needed. based. as closely as possible. on DoD-STD-2167A.
A similar nomenclature has been used for documents (e.g. a correlation will be noted between the software testing
activilies of 2167A and the prototype evaluauon activities) to retain the standard's strong emphasis on visibility.
From u:c outline given it is possible to see how the use of a rapid prototyping approach can be integrated with a
conventional 'production' and still allow the retention of full control and management capabilities essential for the
procurement of large complex systems with extended in service life expectancy.

The identification of the necessary documentation and the use of a prototype to investigate the "unknowns"
thereby reducing the nsk, will make the use of "'waterfall" model a relatively straight forward process as most of
the nsk will have been removed and the implementation will at last become a "production" and not a lengthy
development with all its associated problems.

UNC L ASS I F I ED IUNL I M I T ED

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TPI1 A.1.14

8.0 References:

Ref 1. Royce. W.W. 'Managing the development of large software systems: Concepts and Techniques'
Proc. WESCON. Aug 70

Ref 2. Boehm, B.W. 'Software Engineenng' IEEE Trans Comput. C-25 1226-1241 Dec 76

Ref 3. "Military Standard. Defense System Software Development.' US DoD Washington. DoD-STD-
2167A 29 Feb. 88

Ref 4. Sinclair. Ii. The management of software with along life span' Proceedings of the Seventh Ship
Control Systems Symposium (vol 4) UK 1984

Ref 5. "The STARTS Guide' UK Department of Trade and Industry 1987

Ref 6. Balzer.Cheatham. and Green, 'Software technology in the 1990's: Using a New Paradigm' IEEE
Trans. Software Engineenng Nov.83

Rcf 7. Davis. A.M..Bersoff. E.H..Comer. E.R. 'A Strategy for Companng Alternative Life Cycle
Modcls'. IEE Trans. on Software Engineenng Vol 14 No. 10 October 88

Ref 8. Repon of the Defense Science Board Task Force on Militar. Software. July 1987
Defense Science Board Task Force Chairman Frederick P. Brooks, Jr.

Ref 9. Boehm. B W. 'The Spiral Model of Software Development and Enhancement'
ACM SIGSOFT Software Eng. Notes. 11(4):14.24 Aug 86 & Computer 21(5): 61-72 May 88.

Ref 10. Boehm. Grey. and Seewaldt. 'Prototyping vs Specifying: a Multi-Project Experiment' IEEE
Trans. on Soft-are Engineenng 84

UNCLASSI F I EDIUNL I NI TED

'

U N CL ASS I FI E D/ UN LI MI TE D

A.1.15 AC/243(Panel 11)TP/1

NATO Sy1wpossum

Management and Control of Prototyping

as part of the

Dev.elopment Life Cyclc

Softiarc Enirinecring

AfTO S, mpossurn

UNCLASSIe L" EDUNII E

U N CL AS SI F IED/U NL I MI TE D

AC/243(Panei ll)TP/1 A.1.16

NATO Sympoium

S oft%% are. Engincering

ATO S% mposium

~2~'2JSPECIfICATIWN

IUL I IC Kw I ESG

WILIAU1 a2

I *At~ef U? FUNCTIONSI

CONStCTM(SS APFALYSIS AND ACCEPTANCE

Soflware Engineering

U-NC LA SS!I F I ED I U NL I M I TE D

U NC L A SS IFI ED/ UNL IM I TE D

jA.1.17 AC/243(Panel 11)TP/1

NATO S~nipam

Software Enainccring

%ATO S'w'posun

4Functa onait% Lscr
%.eds

-- Actual

Sy-stem
Ca2pability

to it o2 0) 44 Is

Ti e Software Engineering

U NC LA 5SI F I ED/U NL I MI TE D

UNCLASSI FI ED/UNLIMITED

$ AC/243(Panel lI)TP/I A.1.18

hi Pcwtain he . S stem Sm ne,0Otu4494 lDei*,1~ '*0 Functio , De~nwpmeet

TRT

Softarc Enginccring

%aiTO S. mpoium

L N L A S S I F I E O U N L I M I T E D

\

jA.1.19 AC/243(Panel ll)TP/l

NATO Symposium

Functionality se

Nes volutlonarv

Actual
ISystemr

Cfapability

t 0 I 1 12 t3 14 15

Ti e Softwar e Engineering

NATO S~mposiu

*UUK
Chief Scientic Advisors Report

on
Software Intensive Projects

us
Report of the Defense Science

Board Took Force
on Military Software

Software Engineering

UN C LA S SI FIE D / UNIL I MI TE D

UNCLASS I F I ED/ UNL I M I TED

AC/243(Panel 11)TP/l A.1.20

VI ?%NATO S! m&iut'

".the Importance of iteratve development

of requirements, testing against real

user's needs by prototyping."

Software Engineering

NATO Sympossum

Decisios

DtcW oOi L

Raetooal

Forml
RporfeuFormal NjcaKI Dt..lo~men

Iaformal Rrs.roe, s 4 kcbaial
Reqvreero ANS?$ (v.pu Opolois-offlo Se

Progras

vatmia',-

%tEW MODEL.

Software Engineering

SUN CLASS I F I ED /UNL I M I TED

-1

UNCLASS I F I ED /UNL I M I TED

A.1.21 AC/243(Panel 11)TP/1

NATO Sympmium

What is Prototyping ?
Why Prototype ?

Dcri% cd and Non-functional Requirements

Extent of Prototype

Procurcmcnt Issues

Software Engineering

NATO S? mpwium

A protot.%pe t% pically executes the main-line

functions but not the exceptions. It usually does not

haiC complete error-handling, restart or help facilities

- Software Engineering

UNCLASS I F I EDIUNL I MI TED

f UNCLASSIFI ED/UNLIMITED

AC/243(PanelI1)TPII A.1.22

NATO Sympaslum

Advantages of Prototyping:-

- Saving through Life Costs

- Reduces Risk

- Early Visibility

- More Acceptable

Software Engineering

NATO S~nmpoium

Disadvantages of Prototyping:-

* Short Term Costs

* Prototype Paradox

Software Engineering

UNCLASSIFIED/UNLIMI TED

U N CL A SSI F I ED/IU NL IM I TE D

A.1.23 AC/243(Panel 11)TP/1

NATO Symposium

Softw'are Engineering

NATO Smpsium

Conclusion:

The use of ManagedProwing is an

Essential Part of System Development

and must be Included In the Life Cycle

Software Engineering .o

U NCL AS SI F IED0/ UN L I M ITE D

NATO UNCLASS IF I ED

) REPORT DOCUMENTATION PAGE

1. Reclplent's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 5. Date: 6. Total Pages:
15.04.91 6

7. Title (NU):

Engineering the Process of Software Evolution

8. Presented at:
AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
W. Morven Gentleman

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
National Research Council Defence Research Section
of Canada NATO Headquarters
Ottawa KIA OR6, Ontario B-1110 Brussels
Canada Belgium

(Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

EVOLUTION, REUSE, SOFTWARE COMPONENTS

14. Abstract:

Procurement and contract monitoring procedures focus on stages of
software development prior to first delivery of the product, con-
sequently software engineering has also. This is inappropriate for
products with long life-times, where the requirements change over
that life-time and the product must evolve to meet the changed
requirements.

Cost, resource availability, delivery schedules, and reliability
through exposure dictate substantial reuse of parts of earlier
implementations. This also accommodates user experience with earlier
implementations. Data produced for and by earlier implementations
must be accessible or convertible. The transition must be planned
and supported.

This paper discusses problems that must be addressed in evolving
software, and tools and techniques that are available.

N AT 0 U N C L AS S I F I E D

UNCLASSI FI ED/UNLIMITED

A.2.1 AC/243(Panel 11)TP/I

Engineering the Process of Software Evolution

W. Morven Gentleman*

Table of Contents

1. Evolution
2. Reuse
3. DOD-STD-2167A
4. The Technical Problem
5. The Contractual Problem

Principal Research Officer
National Research Council of Canada

Ottawa, Canada

UNC LASS I F I ED/UNL I MI TED

UNCLASSI FI EDIUNL IMI TED

AC/243(Panel 11)TP/1 A.2.2

Engineering the Process of Software Evolution

W. Morven Gentleman
National Research Council of Canada

Ottawa, Canada

1. Evolution

The traditional view of the software life cycle is something like: a requirement is
formulated, the specification formalised. an implementation designed, the design implemented,
the implementation tested and validated, and then the software is delivered and enters
maintenance mode. This view produces a focus on the early stages of the process,
requirements through fli-st delivery, and that focus is reflected in procurement procedures and
contract monitoring. This in turn has fostered a focus of software engineering, and especially
CASE (computer assisted software engineenng) tools, on these early stages in the software
development process. While there can be no dispute that the early stages of design are
important, this concentration on tht.. unfortunate. Even in the traditional view, it is widely
recognised that the majority of the c -t, perhaps 70% to 80%, is after first delivery, and is only
indirectly affected by improvements in the design stage.

The traditional view is inappropriate for a lot of software because it assumes that the
requirements are fixed. There are many examples of software for which the requirements
themselves change over time. and the software must evolve to meet these new requirements.
Commercial shrink-wrap software, for L xample, has to issue significant updates at intervals of
6 to 24 months, not just to remain competitive by matching and bettering the features of their
competitors, but because the customers will abandon a product if they don't believe the supplier
is alive and well and actively improving it. An example related to military software is that
embedded systems often have a lifetime measured in decades, and over that time the mission of
the system may change drastically, and the operating environment for the system will change.
The point in these examples is that the initial functional requirements may have little
resemblance to the functional requirements needed at later times, and that technology to
establish conformance to the traditional form of initial specification does little to assist in
migrating the product to meet its new needs. Indeed, too narrowly meeting the initial
specification can complicate evolution.

We stress that evolution is qualitatively different from maintenance, although they are
often confused when looking at the downstream costs of software. Maintenance is generally
understood to mean fixing bugs, making minor changes to improve compatibility with the
environment (accommodating to new operating system releases, for instance), and adding
minor enhancements that have little effect on the software as a whole. Evolution to meet new
requirements can involve radical changes. and unfortunately sometimes is treated by completely
rebuilding the software as a new project. We argue that such a response is rarely desirable.
Cost and time to delivery are obvious detractions, but there are others. For instance, a
completely independent implementation is likely to feel different in aspects not covered by the
specification, and this can introduce retraining costs for experienced users. More importantly,
we argue that the response of completely rebuilding the software as a new project is
unnecessary, if thought had been given beforehand to the possibility, or rather certainty, that the
requirements will change.

UNC LASS I F I ED UNL I M I TED

UNCLASSI FIED/ UNLI ITE0

A.2.3 AC/243(Panel 11)TP/1

The key concept is the decision that because we know the requirements will change, the
software should be built not so that it can meet the initial requirements, but that it can quickly
and cheaply be made to meet any set of requirements in some range. It is useful to look at
analogies outside the software domain. The crescent wrench has an advantage over a simple
open end wrench in that it can be used when the size of nut is not known initially, and might
even turn out not to be one of the expected standard sizes. The extension ladder and the Bailey
bridge similarly solve a ringe of problems where a tightly specified device might solve just one.
The 1/4 inch electric hand drill. through adapters, can be used in applications from sanding to
sawing that need not have been considered at initial purchase. On a larger scale, flexible
manufacturing in the factory, based on use of assembly and other robots, not only can
economically provide the advantages of automation for much smaller production runs than hard
automation would require, but facilitates quickly modifying the production line to produce
related items in response to market demand. All these analogies carry the message that there can
be a penalty for flexibility, in that the dedicated item may do its one job better or cheaper if that
is the only job to be done, but that penalty is imanaterial if the job changes. The same situation
can obviously occur in software too, but, curiously, sometimes consideration of how to cope
with a range of requirements can suggest generalisations that actually solve specific cases better
than would the obvious approach for that case.

2. Reuse

A popular topic in software engineering is reuse. i.e. how to amortise development costs
over a bigger base by using existing code rather than developing something afresh for each new
product. Viewing the sequence of products resulting from evolution of requirements in this
light should be rewarding, for surely successive releases of essentially the same program
should have amongst the best opportunities for reuse.

The objectives of reusable software are not just reduced cost and earlier delivery.
Consistency is another benefit, appreciated by users and maintainers alike - and by
management who do not have to pay retraining bills. Improved reliability is a less obvious
benefit, but using components which have had extensive field exposure can be one of the most
effective ways of avoiding surprises from quirks and anomalies, never mind design errors.
(The reliability benefits of off-the-shelf components versus custom design are well recognised
for hardware.) The ability to do large scale prototyping is another objective of reuse.
Prototyping many systems would not be practical if it were not possible to exploit the
preexistence of subsystems, although those subsystems might not be exactly what would be
wanted beyond the prototype stage.

The topic of reuse is an interesting one, because it does not arise naturally in all paradigms
of the software development task. The most common paradigm discussed in the literature is the
development of an isolated program, and in particular the development of a well understood,
fixed function, production program. This is the paradigm for which the waterfall model of
software development is plausible, i.e. the monotonic progression through the stages mentioned
before from tequirements analysis through independent verification and validation. It is well
understood, however, that this pwadigm is not univesal, so another paradigm is often
discussed, which is also the developmem of an isolated proram, but in this case one for which
the desird functionality is not well understood, indeed what might be a feasibility experiment.
In this case the spiral model of softwm development is ofte advocated, in the belief that there
rally is some well-defined requirmem and conIpM di I formal specification, but that it is
just not winiatly. By mad" drough drafts of eMqWumAnts ad speification,
sometimes just drough to peliminary des ps ionmemes dough to simulations,

UNCLASS I FI ED/UNL I MI TED

UNCLASSI F I ED/UNLIMI TED

AC/243(Panel 11)TP/1 A.2.4

through to prototype constructon, and sometimes as far as through to field trials on real users,
those hidden requirements are revealed, and a product results conforming to those
requirements, much as with the waterfall model.

Reuse becomes apparent as an inportant topic when the paradigm of software
development goes beyond the development of an isolated program, and one considers the
development of related program. Two important, and not mutually exclusive, cases exist. The
first case is where there ae families of programs that exist simultaneously, doing related but
different tasks. Sharing components is essential, for reasons from limiting development and
maintenance costs through to ensuring interworking by common interfaces. The design of
these shared components must precede the design of the individual members of the family, each
of which will depend on many components. This is necessary to ensure that the components
are appropriate for all family members, but designing the components first of course inverts the
approach of top down design for the individual family members. In practice what usually
happens is that the initial design of the shared components turns out to be inappropriate for
some family members, and the most desirable resolution is to revise the design of the shared
components to fit all family members, and retrofit these revised components even into the
family members that worked before, in order to achieve parsimony in the number of
components that must be supported.

The other case of related programs is the one we are considering, that of a sequence of
programs evolved from each other. What distinguishes this case from the family of programs
produced simultaneously is that future requirements are unknown. However, the probable
kinds of changes in requirements are often predictable, and so the difference between the two
cases is more apparent than real.

We have chosen to use the term software components, rather than just software reuse,
because the latter term conveys an image of searching existing software for code that almost
does the job, then tearing it out, hacking it up, and hammering on it to fit in its new role.
Crudely using a text editor in this way is likely to invalidate whatever properties the reused
software was known to have. The real benefits require that the reused software components are
literally the identical text.

Although we refer to software components, we recognise that possibilities for reuse are
much broader. For example, software architecture, algorithms, data structures, file structures,
and user interfaces could all be reused even if no code was. At the other end of the spectrum,
databases. documentation, test procedures, and even test results can be reused if appropriate
commonality exists. And as already mentioned, both users and developers can reuse their skills
without needing retraining (and with reduced risk of butter-finger errors) if we ensure programs
behave the same.

3. DOD.STD-2167A

No discussion of Defense System Software Development can ignore this bible, which
together with its DIIs, sets out required activities, required deliverables, required
documentation and required mps. Unfortunately, it really takes the position discussed earlier
of looking at the development of isolated programs. Although software reuse is alluded to,
nothing in the document really encourages its use. and the very choice of the Computer
Software Unit (CSU). i.e. a sepately testable element, as the basic entity in the Software
Developmen Plan may conflict with reusable software that is smuctured at a different level. The
documents required provide no place where musability can be exposed.

UNC LASS I F I EDIUNL lMI TED

UNCLASSI FI EDIUNLIMI TED

A.2.5 AC/243(Panel 11)TP/1

The whole concept of Transitioning to Software Support denies the possibility of coping

with evolution as discussed here.

4. The Technical Problem

What the whole activity in reuse is attempting to do, and what we want to do in evolving
software, is to defy the third law of thermodynamics, or in software terms, to defy the law that
structure in software degrades with time. Instead, through explicit effort, we want to improve
the structure of software as we understand it better.

There are several viable approaches in use. We will discuss toolkits, program generators,
problem-specific languages, configuration management systems, and object oriented
programnung. A key aspect of all of them is the extensibility offered as experience reveals new
needs.

The oldest idea is that of the toolkit, the library of building blocks from which, possibly
with additional glue, programs can be built. Originally subroutine libraries were the usual
choices, but today many other resources from dat structums to dialogues are collected in such
libraries. The tools for finding appropriate building blocks for a particular purpose vary widely,
with the browsers for class libraries of object oriented systems being the best available. But the
major problems are that there is usually little automation to help design what building blocks
should be put in the library, and even less automation to help combine building blocks to
achieve programming objectives.

This leads to the second idea. that of the program generator. Here the library of building
blocks is not used directly by the programmer, but rather by a program, the program generator,
that understands how to combine them. When the objective is defined to the program
generator, it will choose a combination of building blocks to achieve that objective. For instance
the program generator will call buiding blocks if they are subroutines or construct them if they
are database schema. While this approach can be extremely effective, the domain of problems
addressed is usually quite restricted.

Between these extremes is the idea of a problem-specific language. Sometimes this
language is truly independent, but more often it is a dialect of some common language, where
restriction through convention to particular procedures and data structures gives the effect of a
specialised language while leaving the common language as an escape to provide extensibility.

Configuration management sysiems are a quite different idea, and here configuration
management is used in quite a different sense from that, for instance, in DOD-STD-2167A.
Both uses of the term are based on the decomposition of a system into building blocks, with
intervening levels of subsystems. However, whereas DOD-STD-2167A is concerned with
building only one system, concentrating on the construction and integration of the building
blocks to achieve that, configuration management as used here is concerned with building any
system from a catalogue of related systems. Consequently, it includes the narrower sense, but
goes beyond in that each particular system that can be configured is based on selecting from a
choice of building blocks and subsystems. and that choice must be realised, validated and
tracked.

All these ideas can be implemend wid% most propmniung languages and with many
popiansmng styles, but the current fashion of object oriented pogammuig is particularly
effective both because inheritace reduces the volume of code and because encapsulating actions

UNCL ASS I g I ED /UNL I MI TED

UNCLAS S I F I ED /UN L I M I TED

AC/243(Panel 11)TP/1 A.2.6

with data narrows the building block interface that must be understood and matched. A
particularly important issue, however, is that of persistent objects, for often it is the values, and
not just function and structure, that need to be shared.

Programs implemented on such machinery can exploit the commonality between members
of a family. The extensibility of such machinery means that as requirements evolve, if the new
requirements cannot be met by combining the building blocks in different ways, then the
building blocks themselves can evolve to accommodate the new needs. Of course constructing
the program is not the whole story. Various scaffolding, support software particular to the
product being built, must also evolve. Test harnesses, regression testing suites, comparators
designed to highlight differences between versions, table generators, dump analysers,
performance monitors, and other specialised tools are typical examples.

Evolving the program itself, even with its supporting software, is only part of the
problem. When the program is used at many installations, the transition from one release to
another needs planning and possibly tool assistance. The problems encountered in field
upgrade are entirely different from those encountered in shipping only new products. Cutover
to an upgraded version may pose special problems, especially if it must be done without service
outage. Persistent data, such as file structures or databases, may need reformatting. Phasing
problems, where some sites are running on the latest release while others are running on earlier
ones, increase the cost of maintenance because multiple versions must be maintained, and the
situation gets much worse when individual sites can run parts of several different releases.
Education and training to bring both users and maintainers up to speed on the new versions
must be produced.

The foregoing discussion has referred to the result of software development as "the
program". In realiy. large software systems consist of suites of programs, often for different
platforms used synergistically. While this complicates the technical problem, it does not
fundamentally change the issues or approaches.

5. The Contractual Problem

The world of commercial shrink-wrap software shows that evolution can be
accommodated economically and effectively when the specifying and implementing agency are
the same. Software developed for governments, such as military or public service systems,
face problems induced by the procurement process that dwarf the technical ones. Open
tendering to published specifications. with the preference to lowest bidder, discourages
planning for the future. Cost plus funding discourages software, or even tool, reuse. Even
follow-on contracts do not ensure continuity of approach, while bringing new staff (much less
new contractors) up to speed on the structure and style of existing software is hard and
expensive. We do not have the mechanisms to pay contractors not to write code but to reuse it
instead.

The solution to these contracting problems is not clear, but it is evident that part of the
solution must be that functional specification of the currently needed system is not enough.
Specification of a plan for change and a plan for reuse must be part of the contract, with the
consequent specification of support and tools. The cost of identifying, evolving and certifying
reusable components must be distinguished from the cost of using them, as it is for hardware.

Finding a resolution to these contractual problems is the real challenge, and is the key to
coping with change.

UNCLASSIFIED/UNLIMI TED

NATO UNCLASS I F I ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

ACl243(Panel 11)TP/1 s. Date: 6. Total Pages:
_ 15.04.91 12

7. Title (NU):

AMEP: A Case Study in Object Oriented Systems Engineering

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
Dr. Brian M. Barry

10. Autnor(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
DREO Defence Research Section
3701 Carl ing Avenue NATO Headquarters
Ottawa, Ontario KIA OH4 B-1110 Brussels
Canada Belgium

(Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

ESM, OBJECT ORIENTED PROGRAMMING, INCREMENTAL DEVELOPMENT,
SOFTWARE ENGINEERING, SMALL TALK, PROTOTYPING

14. Abstract:

An Electronic Support Measures (ESM) signal processor may be
characterised as vertically integrated: it must control low-level
devices, perform computatlonally intensive signal processing, and
may even have knowledge-based subsystems. The most difficult ESM
subsystems to specify are those dominated by data-driven heuristic
algorithms which are applied non-deterministically. A prototyping
approach allows requirements for embedded systems of this type to be
evolved in incremental stages. When compared with more traditional
systems engineering methods, incremental development is not only
more productive, it also results in systems which are better matched
to end-user requirements. Object oriented environments provide the
programming facilities needed to support prototyping and Incremental
development. The Defence Research Establishment Ottawa's Object
Oriented Development and Test system (OODTS) is a good example of
such an environment. AIEP, a prototype ESM signal processor which
is being developed using the OOTS, illustrates both the benefits of
incremental develop ment and the utility of the OODTS.

U N CLA S SI FIED /U N LI MI T ED

A.3.1 AC/243(Panel 1l)TP/1

A.MEP: A CASE STUDY PN OBJECT ORIENTED SYSTEMS ENGINEERING

BRIAN NIL BARRY*

1. INTRODUCTION

2. AN INCREMENTAL APPROACH TO REQUIREMENTS ENGINEERI.NG

2.1 How prototyping improves productivity

2.2 Developing requirements for data-driven systems

2.3 Prototyping complements incremental development

2.4 Incremental development requires discipline

3. THE OODTS AS A PROTOTYPING EN"VIRONMIENT

3.1 Programming language issues

3.2 Programming environment issues

4. THE AMEP PROTOTYPE

4.1 An overview of AMEP

4.2 Review of lessons learned

5. CONCLUSION

6. REFERENCES

Defence Research Establishment Ottawa, Ottawa, Canada

U N t- L J 1 r 1 L V I V #I U. . ._ _ _ _ _ _

UNCLASSIFI ED/UNLIMITED

AC/243(Panel 11)TP/1 A.3.2

1. INTRODUCTION

The Advanced Modular ESM Processor (AMEP) is a prototype ESM signal processor for
naval applications, which has been developed using an object oriented methodology [1. 1][1.2].
Like most large C3 1 applications, AMEP is a vertically integrated system, handling everything
from hard real-time dam acquisition tasks to knowledge-based signal processing and complex
user interfaces. An Object Oriented Development and Test System (OODTS) has been
developed at DREO to provide a testbed for ESM signal processing research (an Electronic
Support Measures or ESM system is a passive surveillance receiver which intercepts and
analyzes radar signals). Each testbed is built using VME bus components: a programmable
pre-processor which selectively captures and buffers input signal data, 4-6 single board
computers which perform signal processing tasks, and peripherals to support I/O (Figure 1.1).

The OODTS integrates Smalltalk and C language tools with Harmony [1.3], a real-time
multitasking multiprocessing kernel. Unlike most other multiprocessor real-time operating
systems, which have been "scaled up" from uniprocessor environments, Harmony was
designed specifically for multiprocessor operation. The Smaltalk dialect used in the testbed.
called Actra. provides actor objects which can execute concurrently and are functionally
equivalent to Harmony tasks [1.4]. Conceptually, each actor encapsulates a number of
cooperating non-actor objects which execute sequentially. Actors synchronize their activities
and communicate by sending one another messages. They are organized hierarchically, and
use delegation to share responsibility for performing tasks. Actra has been integrated with the
ENVY1 lManager source and object code management system, which traces its lineage to the
Orw ell system [1.5].

Throughout the A.NEP project. we have followed an incremental approach to softare
development %k hich is complemented by the OODTS. The testbed environment provides an
exploratory programming system which permits developers to evolve requirements in a
disciplined way as a project progresses. We begin with a simulation or emulation of the
desired system. and then, supplying details as required, "grow" it by stages into a solution. In
this way. design mistakes will be encountered and corrected before a large capital investment in
software has been made. Since intuition is usually a poor guide for identifying performance-
c-itical regions. we deliberately postpone optimization until the final stages of development.
System performance can then be measured reliably; no guesswork is needed to identify critical
regions, and no tine is lost optimizing code which does not survive the full development
process.

In the next section we will explain in more detail why we advocate an evolutionary
approach for developing embedded systems such as AMEP. Requirements for such systems
are difficult to specify, in part because they include a large number of data-driven heuristic
algorithms which must be developed experimentally. A prototyping approach allows
requirements to be evolved in stages. as opposed to more traditional approaches, which assuw.
a good understanding of the problem domain and potential solutions at an early stage of
development. Prototyping is often associated with object oriented design and programming
methods. In the third section we will explore this relationship: we will describe the
programming environment capabilities needed to support prototyping, and we will show that
an object oriented system such as the OODTS has all the required facilities. To illustrate these
points. we will conclude with a description of the AMEP prototype.

I ENVY is a trademark of Object Technology International, Inc.

UNCLASSIFIED/UNLIMITED

UNCLASS! FI ED/UNLIMI TED

A.3.3 AC/243(Panel 11)TP/1

Receiver
VSB Bus Data Bus

V

E M e o yPC.AT

B
U

j~jWorkstation

AM~s LAN NoTo Other Nodes

Figure 1. 1: AMEP Development System

2. AN INCRENIWNTAL APPROACH TO REOUIREMEN 'S ENGINEERING

Not surprisingly, systems research for sensors like ESM tends to be driven by new
demands made on the system, either by changes in the signal environment, or by the ESM
system's end-users, the ESM operator and the ship's Command and Control System. Both the
density (i.e. the number of radar pulses per second) and the complexity of intercepted signals
can be expected to severely stress most existing ESM systems within 5-10 years. Moreover,
the next generation ESM system. although it will have to be capable of autonomous operation,
must also be able to function as pan of an integrated sensor system. It must be able to provide
the Command and Control System with high-grade information regarding the location and
disposition of other platforms operating in the ship's environment

To meet these requirements it was evident that AMEP would require much greater
functionality than current systems. leading to a dramatic increase in the complexity and size of
the system software. Unfortunately, repeated experience has shown that the effort required to
develop large software systems does not scale up linearly r2. l][2.21. We faced a practical
problem of designing and implementing the AMEP system with very limited resources. Not
only did we have to construct a working system. we also had to carry out a substantial program
of research into new signal processing algorithms.

UNCLASS I F ED/UNL I MI TED

UNCLASS I F I ED /UNL I MI TED

AC/243(Panel 11)TP/! A.3.4

2.1 How nrototvnig imnroves nroductivitv

It was apparent that if we could not find ways to significantly increase productivity, the
scope of the undertaking would overwhelm us. Examining the so-called "software crisis" in
[[2.21[2.3], Brooks asserts that the "essential difficulty" in software development lies in the
intellectual exercise of conceiving software (i.e. analysis and design): getting a good
understanding of the problem, finding a correct solution, and deciding how best to implement
it. He characterizes software production problems (i.e. those encountered during
implementation, integration, and testing) as "accidental difficulties", in the sense that there is no
fundamental reason why these labour intensive tasks cannot (at least in principle) be finessed
by using modem software engineering tools and techniques. This argument holds that during
the analysis and design phases, the software development process is fundamentally difficult,
requiring creativity and insight on the part of software engineers, and that there is really no way
to avoid this.

Any strategy to improve productivity must be cognizant of these distinctions. The
benefits to be gained from modem software engineering tools are felt primarily during the
production stages. On the other hand, the best way to improve productivity during analysis
and design is to avoid solving the wrong problem, or, at least, to catch errors early and
minimize backtracking. As we shall see. incremental development combined with protoyping
can help in both areas. Requirements and designs are built up in incremental steps, and then
validated using an executable model, the prototype. At each stage designers are not required to
understand the total solution, only the next step. Errors are detected early, making
back-tracking easier. The prototype itself can be built using modem programming tools such as
those provided in DREOs OODTS. At each stage, the capabilities of the prototype are
enhanced, until it is functionally complete. Then, by improving the real-time performance of
the prototype, we can atrnc at a final system solution.

2.2 Develonin! reouirements for data-driven systems

Formulating and validaung requirements is easily the most complex and demanding task
encountered in new system development. It is especially difficult when there are no strong
models for the system under development, e.g. when the development team has no previous
experience building similar systems. This is very often the case when new sensors are being
developed. Figure 2. 1 shows a block diagram for a generic sensor. Sensors typically receive
signal data (which they may generate themselves if they are active), and, using appropriate
signal processing algorithms, measure some set of target parameters. A target tracking
subsystem is usually included which groups signal data with similar parameters and provides
some indication of parameter change over time. Based on this track (i.e. erouped parameter
data), the system tries to infer other attributes which can be used to classi;, and identify the
target. Nearly all sensors employ standard signal processing algorithms, v, hich may be
implemented digitally or with analogue devices, for parameter measurement and some tracking
functions.

Heuristic inferencing techniques are typically used for classification and identification,
and may also be used to perform tracking and pre-processing functions when there is
insufficient data for classical methods (e.g. Kalman fidters) to be effective. These heuristic
algorithms tend to be derived empirically by studying intercepted data. In the usual case, this
data is collected by the last generation sensor, and studied off-line by trained analysts who
attempt to characterize it. In a traditional approach to developing new sensors, data analysis is
followed by off-line algorithm development. At the end of the process, requirements and
specification documents will be wTitten which-mandate the use of the most proimsing
algorithms. Not only is this off-line development process tedious and.manpower intensive, it
has a serious flaw. In most instances, one needs to assess not only the pe-formance of a

UNC LASS I F I ED I UNL I M I T ED

UNC LASS I F I ED /UNL I MI TED

A.3.5 AC/243(Panel 11)TP/1

peratoa

CF :ric Tra

nondeerinsrialy y daa-riendeioprs.Frlt lag sysems Thcissetrml

a-se. iUp,'
difcult.Asnoted in[, Sstems bl t e jwst Dto mid ofdmanto(fresealther ai relys olyim a n t bnd stemSie ractlie the ealcciicaion e ki whTh in d u
I Mesae Updte

PrtoTrin tec a a e vSrirem e

Following 12.6], w e l epotypinge as theprosol osrcigsfwr o h ups

ofeobtng nor mat i bother adqay and e aproraiitns othdeinrs coneptios
of sotwae podut. rototypes aditnu Shedyfrom rdcinsytmaeuslly

Sand moitorTi s lt outel esetalrsneghpro et f uigthk rtoyei

9Messages

Pre-Processor

Figure 24. 1: Generic Sensor Block Diagram

partcular algorithm in isolation, but also the collective behaviour of algorithms, when applied
non-deterimnistically by a cltte daecision prcess. For large systems, thi is extremely
difficult. As noted in [2.3], "the systems built today are just too complex for the mind of man
to foresee all the ramifications purely by the exercise of analytic imagination...in the best
modem practice, the early specification is embodied in a prototype, which the intended users
can themselves drive in order to understand the consequences of their imaginings".

213 Prototyoing comnlements incremental develonment

Protoryping techniques are ideally suited to developing ESM software requirements.
Following 2.6 , we define protoyping as the process of constructing software for the purpose
of obtaining information about the adequacy and appropriateness of the designer's conception
of a software product. Prototypes. as distinguished from production systems, are usuallydeveloped quickly, are more adaptable and expandable, and are capable of being instrumented
and monitored. This last is absolutely essential: since the purpose of building the prototype is
to gather information about the system under development, there must be instrumentation and
monitoring tools which can collect the data needed. T1here is a price to be paid for this
openness and flexibility, and it is usually that the prototype is (at least initially) incomplete and
less efficient that a production system.

As suggested by Jacobson [2.4)[2.51, there is a strong connection between a list of
possible "use cases" and system requirements. In Jacobson's terminology, a use case is a
particular set of events which stimulates the system, together with a set of desired responses.
Use cases can be elaborated using specialization (inheritance) and composition. In principle, if
all possible use cases could be determined. this would constitute a complete specification of
system requirements. In the case of sensor systems, use cases will be based on combinations

of possible input signals, and on operator requests for signal interpretation; in practice, the set
of use cases is infinite and cannot be completely specified, In spite of this, the principal is

UNC L ASS I F I ED / UNL I MIT ED

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 1l)TP/1 A.3.6

sound, and defining a taxonomy of representative use cases is an excellent method for
analyzing requirements.

During incremental development, refining the set of use cases, and hence the system
requirements, proceeds iteratively. Each prototype build may be thought of as a mini-
development cycle, with its own analysis, design, implementation and test phases. The first
prototype is a skeletal system which contains only a few subsystem blocks, represented in our
system by actors, and fairly simple interfaces. These actors provide a framework within which
signal processing algorithms can be implemented and evaluated. The initial algorithms and data
structures reflect a rather naive view of the environment. As our understanding of the
characteristics of the signal environment improves, our algorithms can be improved, and we
are able classify and identify increasingly sophisticated signals. At the same time, by virtue of
these improved signal extraction capabilities, new possibilities arise for operator interaction and
data interpretation. Each stage adds new breadth or depth to the set of use cases. Testing is
typically carried out using both real and simulated input data. Based on an analysis of the test
results. the requirements are refined and a new mini-development cycle begins again. At each
stage the prototype itself is being incrementally improved. As indicated earlier, it will
eventually evolve into the final system.

2.4 Incremental development reguires discinline

Based on our experience. there is a danger inherent in an incremental development
approach: the process of prototype construction can build a momentum of its own,
overshadowing the analysis and design activities. To counteract this tendency, it is important
that there be a clear idea as to what each prototype build is meant to achieve, and how the
results will be evaluated. Consequentl.. before the first prototype is constructed, performance
coals must be established, together with criteria for determining how well these goals are met.
These early performance goals are of necessity as vaguely stated as the requirements
themselves, but they provide an iniual place to stand. After each build, the prototype is
evaluated against the performance goals. deficiencies are identified and documented (by
analyzing why performance goals are not met), and a plan for changing or augmenting the
prototype to remedy these deficiencies is developed. This plan guides the implementation of
the next prototype. In addition. after each build the performance goals themselves as well as
the evaluation criteria are also reviewed, and. if necessary., modified. When functional
performance goals have been achieved, real-tume performance is measured and time-critical
secuons of code are optimized.

3. THE OODTS AS A PROTOTYPING NMVIRONMENT

Object-oriented programming systems and prototyping frequently seem to be linked,
indeed, advocates of one are very often practitioners of the other. In this section we shall see
that this connection is not accidental. Based on our experiences building several AMEP
prototypes, we will identify a number of the desirable capabilities which a good prototyping
environment should possess. In fact, we found that the OODTS environment described in the
introduction already has many of these features, and forms a good substrate on which to build
the rest. We shall first consider programming language issues, and then expand the discussion
to look at requirements for the programming environment as a whole.

3.1 Proermmine a o isse

A prototyping system can be thought of as one or more programming languages together
with an associated environment, that is. an integrated set of software tools. To avoid forcing
partcular programming language semantics on the problem during requirements analysis and
design, the programming languagets) must allow creation and direct manipulation of powerful

UNC LASS I F I ED UNL I M I TED

UNCLASSI FI ED/UNLIMITED

A.3.7 AC/243(Panel 11)TP/l

high level abstractions. It should also provide a late binding capability. Deferring commitment
is essential in the early stages of prototype development: there is no advantage to strong typing
at compile time when the appropriate type has not been identified. At the same time, the
prototype must be executable, so relatively low-level system programming and numerical
computation must also be supported. If more than one language is used to meet these diverse
requirements, they should be interoperable. To facilitate user extensions, the prototyping
system should have an open architecture, in the sense that interfaces should be visible and
changeable. Software reuse must be facilitated, and there should be facilities to store and
retrieve persistent objects such as programs, databases, and other arbitrary data structures.

Object oriented design methods are known to result in well structured, understandable
and modular systems. The prototyping system should support the object oriented
programming paradigm, that is, there should be programming language support for abstract
data types and inheritance. To facilitate information extraction, all data values should be first
class, in the sense that they can be passed as subroutine parameters, inspected, and stored. To
enable knowledge based systems to be prototyped, support should be provided for rule-based
programming. There should be first class constructs for expressing concurrency. Lastly, there
ought to be a large library of pre-defined classes with which to build new applications.

Actra, when augmented with C to provide low-level programming capabilities, meets
most of these requirements. Since Actra is based on Smalltalk, it provides high level
abstractions, dynamic binding, and an open architecture. The Smalltalk system is itself the best
known example of successful software reuse, and provides a large library of well-tested
reusable classes. Actra includes a Prolog compiler which is adequate for constructing simple
rule bases. Actors add a modern model of concurrency to Smalltalk. Interoperability with C is
provided in two ways. The first is that tools are provided to write "primitive" Smalltalk
methods as C functions. Alternatively, an entire actor can be re-implemented as an independent
Harmony task. which can communicate with Smalltalk actors or other tasks via message-
passing. ENVY/Manager provides persistent storage of a limited set of objects associated with
configuration management.

3.2 Prornmrnin, environment issues

The programming environment should feature an integrated tool set, with a common
representation for shared data, which includes the usual software development tools (e.g.
compilers, loaders, editors, browsers. etc). In addition, it should be extendible, have accurate
timing mechanisms, and employ a modern user interface. To support incremental software
development, small changes should not result in long compilation times. One possibility is
dynarmc linking and loading of separately compiled modules. other solutions are also feasible.
The environment must include garbage collection (automatic memory management): forcing
programmers to worry about memory management is unacceptable overhead during
prototyping. However. to allow evoluuon towards a real-time system, it is highly desirable
that garbage collection be flexible enough to permt directives and manual overrides by the
programmer. Support for multiprocessors and multitasking. as well as the standard
networking protocols. is also required. To enable transparent portability, the environment
should be supported on a number of standard platforms. for embedded applications, the host
development system should be closely integrated with the target.

As mentioned earlier, prototypes are developed as a means of collecting information
about the behaviour of the system under development. Consequently, a prototyping system
must include a rich set of information extraction facilities. Such instrumentation should be as
non-intrusive as possible. and should permit the end-user to collect information about static and
dynamic time/space use. perform event-driven data inspection and recviding, and monitor
individual instances of objects. It should be possible to construtt test harnesses which allow

UNCLASS I F I ED / UNL I M I TED

UNCLASSI FI ED/UNLIMI TED

AC/243(Panel 11)TP/1 A.3.8

incomplete systems to be executed, and which support test scenario generators. Data analysis
and presentation tools which can be customized for the application are needed. Support must
also be included for the requirements analysis and design processes. Browsers and
diagramming tools should be available, as well as document and report generators. Software
management tools must provide indigenous support for team programming (source and object
code sharing, electronic mail). This must be done within the context of a configuration
management system which provides fine-grained, multi-threaded version control.

How does the OODTS environment measure up against these requirements? To begin
with, it inherits Smalltalk's extendible, integrated tool set and user interface, which is still the
standard by which others are judged. Timing to microsecond accuracy has been added by
accessing timer chips on the testbed's single board computers. Smalltalk already provides
incremental compilation to byte codes (the underlying virtual machine is a byte code
interpreter), and ENVY/Manager adds what amounts to a dynamic link capability. Garbage
collection is of course provided (another Smalltalk legacy); while not yet available, support for
some form of programmer directives and manual overrides is planned. Harmony provides the
multiprocessor and multitasking support; TCP/IP over ethernet is also included. In the DREO
testbed, code development is done on personal computers which have a wide bandwidth bus-
level interface to the VME target, and are able to generate and receive interrupts.

Partial progress has been made towards satisfying the remaining requirements. To
instrument target applications, the main tools are a statistical Profiler which takes snapshots of
the virtual machine stack, a Performance Monitor which instruments individual methods, and
encapsulators, which place a monitoring "wrapper" around individual objects. Test harnesses
and data analysis tools tailored to the ESM application are planned. ENVY/Manager provides
support for team programmng, as well as first class documentation objects. The latter are used
as input for automatic report generators which have been developed at DREO. At the time of
writing, the environment is lacking design and requirements analysis tools, database-level code
metric collectors. diagramming aids. and code generators.

4. THE ANEP PROTOTYPE

The AMEP project team (staffed at the 10 - 12 person level) has used the Actra
environment to implement a series of A.MEP prototypes over the last three years. As might be
anticipated, the AMEP system design follows a strongly object-oriented approach. Object-
oriented design emphasizes the importance of identifying the main objects in the problem
domain and their natural interfaces, and modeling these directly in the system software. The
emphasis at this stage of the research project has been on defining and enhancing the "core"
objects in the system.

4.1 An overyiew of AMEP

The main objects in the AMEP "'core" system, as shown in Figure 4. 1, are:

(a) The Pre-Processor, which performs the basic deinterleaving or data reduction task.
Its function is to control the ANEEP pre-processor hardware, acquire new signals which enter
the environment, and track data from previously identified signals.

(b) The Track. which is responsible for classification and identification of data from a
single emitter in the environment. Tracks function like a mini-ESM system: they take new
signal data collected by the Pre-Processor, analyze it, and attempt to match the observations
with known ermtters.

UNC LASS I F I ED / UN L I M I TED

UNCLASSI FI ED/UNL IMI TED

A.3.9 AC/243(Panel 11)TP/1

Simmal DagaF 'AMEP vents. _
PRE-PROCESSOR Pre ""

,& Processor

HARDWARE Pr..Processor -Proceued Data

Data
Control Packets

Message$Track

Adialolet, , ".I r Track .

Reports

ESNI Emitter
Library Objects Merge/Split

Requeasts~Track

(Operator Emitter/Situation U'pdates/Y
R ep o r ts V i w p r

SituationitTrack
Reports

Figure 4. 1: AMNEP Dataflow Diagram

(c) The Pulse Stream Administrator. which provides an intelligent interface between the
Pre-Processor and the Tracks. The Pulse Stream Administrator creates and manages Tracks,
routes data from the Pre-Processor to the appropriate Track, and provide the Pre-Processor
with information which can be used to fine-tune the pre-processor hardware.

(d) The Viewport Manager, which is responsible for coordinating all activities within a
defined segment of emitter parameter space. A component, the Local Track Analyst, holds the
results of Track processing on active emitter tracks. There is also software for detecting and
merging fragmented tracks (i.e., tracks generated by the same emitter which should have been
correlated but were not), splitting tracks, and archiving Track objects which are inactive.

(e) The ESM Library, which has the combined functionality of an object-oriented emitter
database and a database management system. The Track passes high-level descriptions of new
signals to the Library, which responds with candidate emitter types to explain the observations.
The design of the ESM Library makes it possible for each emitter type to have its own
customized data analysis software.

(f) The Tactical Situation Analyst. which tries to deduce the current tactical situation
around the ship. The design permits this module to evolve into a knowledge-based expert
assistant for the ESM operator.

4.2 Review of

Table 4.1 shows code metrics for the versionof the AMEP prototype reported on in 11. 1
(third column), as well as its successor (second column), which was completed in early 1990.

UNCLASSI FI ED/UNLIMITED

UNCLASSI F I ED / UNL I MI TED

AC/243(Panel 11)TP/1 A.3.10

These are contrasted with statistics for the SmalltakV286 2 environment. As can be seen,
AMEP is approximately three times the size of the Smalltalk environment itself. The data we
have collected confirms some of the"software myths" which have wide circulation in the
Smailtalk community regarding the size of methods (6 -7 lines of code) and classes (about 20
methods). We also collected data on several static measures of inheritance. We were
motivated by the fact that a future version of AMEP will likely be coded in Ada, which does
not support inheritance. The "average inherited classes" refers to the average depth of the
inheritance tree, excluding the root class (called Object in Sma~ltalk). The "average inherited
methods" is the total number of methods inherited from superclasses, again excluding those
inherited from class Object. The rationale for excluding Object is that it provides capabilities
analogous to those implemented by "system calls" in more traditional environments; we wished
to measure the significance of inheritance in the application code. Our conclusion was that in
certain subsystems, especially those involving complex data structures such as knowledge
bases, porting to Ada may indeed cause difficulties.

During the early stages of the AMEP project, effort was focussed on identifying major
ESM functions. identifying the main actors, partitioning functions amongst the actors, and
understanding the nature of the resulting interactions. The early prototype designs reflected
this activity: they were incomplete. and very unstable, undergoing major structural changes
from one version to the next. By contrast, the effort is now directed towards improving the
functionality of the system: deriving better algorithms, measuring response times, etc.
Architectural changes are still occasionally necessary, but they occur much less frequently.
Once again. t&.is is reflected in the prototype. Even though the current version is nearly twice
as large as its predecessor, it is structurally very similar.

V/286 Current Last
Image AMEP AMEP

Lines c: Code 16405 46305 26341
Lines of Comment 5253 65913 37646
Lines of Documented Code 21658 112218 63987
Total Classes 115 347 218
Lines of Code/Method 7.01 6.58 5.90
Methocs/lass 20.34 19.35 20.13
Average Inherited Classes 1.28 1.98 1.75
Average Inherited Methods 33.50 46.60 48.98

Table 4.1: Comparison of Code Metrics for AMEP Prototypes

Using the OODTS environment, we have measured our productivity for new code at
about 4800 lines of code per man-year. This is somewhat better than what is typically reported
for procedural languages like C or Ada in industrial environments, but much less than is often
claimed for object oriented languages like Smalltalk. We suspect that higher numbers derive
from small two or three rerson projects, which often do not produce indusrial strength
documentation, and feel that our number is more representative of what can be achieved with a
large team. As a caveat, it should also be stated that it is difficult in an OOPS environment to
provide hard numbers for productivity without an instrumented source code database. In

SmalltalkjV286 is a registered trademark of Digitalk Inc.
UNCLASS I F I E D/ UNL IMI I tU

UNCLASSI F I ED/UNLIMI TED

A.3.11 AC/243(Panel 11)TP/1

particular, the impact of code reuse is hard to quantify: who is the most productive
programmer, one who writes 5000 lines per year, or one who reuses 20,000 lines?

Another factor which must be accounted for is that Smalltalk achieves more functionality
per line than a typical procedural language. We believe that on average, in a large system such
as AMEP, one Smalltalk statement roughly translates to 4-6 lines of C or Ada, largely because
of increased opportunity for reuse. Again, one must be careful interpreting such numbers.
There will be a large variations between code intended for different kinds of applications;
however, these variations should even out if the project is large enough and has enough
diversity. Taken together, we believe that slightly increased productivity for new code
production plus better reusability provides a overall productivity multiplier which is somewhere
between 5 and 8. Further studies are planned to try to make this figure more precise.

5. CONCLSION

Based on our experiences with the AMEP project, we are solidly committed to the kind of
incremental system development approach described in this paper. Of course, the arguments
which have been presented, and the conclusions drawn, have direct relevance only to
applications which are similar to AMEP: large projects, which begin with inexact requirements,
and are oriented towards embedded systems. We are also convinced that an object oriented
programming system, such as the Actra environment, is the right choice for constructing such
prototypes. As noted, to have built an equivalent system using a traditional approach with
languages such as C or Ada would have required at least five times the effort, and the resulting
system would have been much less flexible. In the final analysis, it is the economic arguments
which are most persuasive: since mistakes are inevitable, one must find ways to make the cost
of repairing mistakes demonstratively less than the cost of learning to live with them.
Otherwise, poor systems are inevitable.

6. RFERENCES
1. 1 Barry, Brian M.. "Prototyping a Real-Time Embedded System in Smalltalk", Proceedings
of OOPSLA 89, New Orleans, La., ACM SIGPLAN. October 1989, Pp. 255.

1.2 Barry, Brian M., D.A. Thomas, John R. Altoft. and Mike Wilson, "Using Objects to
Design and Build Radar ESM Systems", Proceedings of OOPSLA 87, Orlando, Fl., ACM
SIGPLAN, October 1987, Pp.192.

1.3 Gentleman, W. Morven. "Using the Harmony Operating System", National Research
Council of Canada Report No. 24685, National Research Council of Canada, Ottawa,
Canada, May 1985.

1.4 Thomas, David. A., Wilf R. Lalonde, John Duimovich, Michael Wilson, Jeff McAffer,
and Brian Barry, "Actra - A Multitasking/Multiprocessing Smalltalk", Proceedings of the ACM
SIGPLAN Workshop on Object-Based Concurrent Programming, ACM SIGPLAN Notices,
Volume 24, Number 4, Pp. 87.

1.5 Thomas. D.A., and Kent Johnson, "Orwell -A Configuration Management System for
Team Programming", Proceedings of OOPSLA 88, San Diego, ACM SIGPLAN, September,
1988, Pp. 135.

2.1 Boehm, Barry W.."Improving Software Productivity", IEEE Computer, Vol. 20, No.9,
Pp. 43.

UNCLASSI F I E IUNLIMITED

UNCLASSI FI ED/UNL IMI TED

AC/243(Panel 11)TP/1 A.3.12

2.2 Brooks, Frederick P., "No Silver Bullet: Essence and Accidents of Software Engineering",
IEEE Computer, Vol. 20, No.4, Pp. 10.

2.3 Brooks, Frederick P. et. al., Defence Science Board Task Force Report on Military
Software, Office of the Under Secretary of Defense for Acquisition, Washington, D.C.,
September 1987.

2.4 Jacobson, Ivar. "Language Support for Changeable Large Real Time Systems",
Proceedings of OOPSLA 86, Portland, Ore., ACM SIGPLAN, September 1986, Pp. 377.

2.5 Jacobson. Ivar. "Object Oriented Development in an Industrial Environment", Proceedings
of OOPSLA 87, Orlando, Fl., ACM SIGPLAN, October 1987, Pp. 183.

2.6 Draft Report on Requirements for a Common Prototyping System, November 1988;
Robert Balzer, Chairman, Richard Gabriel, Editor; Published in SIGPLAN Notices, March
1989, Pp. 93.

AC COINLEDGEMENTS

The author wishes to acknowledge the contributions of the AMEP project team at DREO, of the
Actra developers, and of the developers of Harmony. Without their efforts, this paper quite
obviously could not have been written. Several thoughtful discussions with Ivar Jacobson,
Brad Cox, and Dave Thomas were very helpful in preparing the material in sections 2 and 3,
although any conclusions or opinions stated are the author's alone.

UNCLASS I F I ED / UN L I M I T E D

NATO UNCLASS IF I ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 5. Date: 6. Total Pages:

1 15.04.91 17
7. Title (NU):

Transformational Implementation of JSD Specifications in
Smalltalk-80

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

g. Author's/Editor's:
Colin Lewis - Bryan Ratcliff

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
CAt Division Dept. of Computer Defence Research Section
RARDE Science NATO Headquarters
Fort Halstead Aston Triangle B-1110 Brussels
Sevenoaks Birmingham Belgium
Kent TN14 78P B4 7ET (Not a Distribution Centre)
United Kingdom United Kingdom
12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

OBJECT ORIENTED PROGRAMMING, JACKSON SYSTEM DEVELOPMENT,
SMALLTALK-80, TRANSFORMATIONS, IMPLEMENTATION FOLLOWSETS

14 Abstract:
The paper first presents an overview of Jackson System Develop-

ment (JSD) and Object Oriented Programming. JSD is an operational
software development method in which implementation is essentially
a transformational process. Object Oriented Programming is a data
abstraction and encapsulation paradigm with an architecture able to
support software reuse. The approach adopted to map JSD specifica-
tions into procedural environments typified by Cobol, Ada, etc. in-
volves techniques such as inversion and state vector separation. At
present, however, no strategy exists for mapping JSD specifications
into object oriented environments. The paper describes transforma-
tions capable of mapping JSD specifications into Smalltalk-80. The
basic strategy is one whereby inversion is used to remove all con-
currency in a specification. Two approaches implementing inversion
are described.

T n 1NCt ASSIFIED

U NC L ASS I FIED/ UNL I MI TE D

A.4.1 AC/243(Panel 11)TP/1

TRANSFORMATIONAL IMPLEMENTATION OF
JSD SPECIFICATIONS IN SMALLTALK-8O'r

Cohn Lewis* and Bryan Ratcliff**

Connt

ABSTRACT
I INTRODUCTION
2 JACKSON SYSTEM DEVELOPMENT

2.1 Background
2.2 Modelling
2.3 Specification
2.4 Implementation

3 OBJECT ORIENTED PROGRAMMING
3.1 Objects
3.2 Inheritance
3.3 Message Passing
3.4 Persistence

4 TRANSFORMATIONAL STRATEGY AND ITS IMPLEMENT1ATION
4.1 Overview
4.2 Smalltalk-80 Context Manipulation

4.2.1 Architecture and Operation
4.2.2 Re-entrant Proceduires
4.2.3 Problems

4.3 Followsets
4.3.1 Followset Definition
4.3.2 Guards
4.3.3 Smalltak-80 Realisation

5 CONCLUSIONS
6 REFERENCES

*CAI Division. RLARDE. Fort Halstead. Sevenoaks. Kent TN14 7BP.
"Depatment of Computer Science and Applied Mathematics, Aston University. Aston

Triangle. Birmningham B4 7ET.

'~Smaihtalk-40 is a registemd attie mark of ParcPlace Systems. USA

U NC L AS SI F I E D /U NLI MI T ED

UNCLASSI FIED/UNL INI TED

AC/243(Panel 11)TP/1 A.4.2

ABSTRAT

The paper first presents an overview of Jackson System Development (JSD) and
Object Oriented Programming. JSD is an operational software development method in
which implementation is essentially a transformational process. Object Oriented

Programming is a data abstraction and encapsulation paradigm with an architecture able
to support software reuse. The approach adopted to map JSD specifications into
procedural environments typified by Cobol, Ada. etc. involves techniques such as

inversion and state vector separation. At present, however, no strategy exists for
mapping JSD specifications into object oriented environments. The paper describes
transformations capable of mapping JSD specifications into Smalltalk-80. The basic
strategy is one whereby inversion is used to remove all concurrency in a specification.
Two approaches implementing inversion are described. The first approach realises
inversion by manipulating Smalltalk-80 contexts (stack frames). This is possible
because contexts are first class objects which are accessible to the user like any other
system object. However. problems associated with this approach are expounded. The
second approach realises the behaviour of a suspend and resume mechanism via
structures called 'followsets'. A followset represents all possible state transitions a
process can next undergo from the state it is currently in. Followsets can be automatically

generated from JSD process structures and provide a basis for transforming JSD
specifications into any object oriented language.

Object Oriented Programming, Jackson System Development, SmallTalk-80,
Transformations. Implementation, Followsets.

1. INTRODUCTION

Transformations for realising Jackson System Development (JSD) specifications in
procedural languages such as Pascal. Fortran. Cobol, etc. are well known [1]. The aim of

this paper is to describe a transformational approach for implementing JSD specifications
in object oriented programming languages such as Smalltalk-80 [2]. The paper:

0 introduces the general characteristics of JSD and Object Oriented Programming;

* shows how JSD specifications can be transformed into Smalltalk-80

implementations.

UNCLASS I FI ED/UNL IMITED

UNCLASSIFIED/UNLIMITED

A.4.3 AC/243(Panel 11)TP/1

The transformations described are not specific to Smalltalk-80, but can be used for
implementing specifications in any object oriented language. Further, the transformations

are also suitable for implementation in languages which are 'goto-less' (eg Occam'M).
The effect is to extend significantly the scope of JSD in terms of the implementation
architectures to which it can be targeted.

The paper is divided into five sections. Section 2 introduces the JSD method. Section
3 briefly describes Object Oriented Programming and Smalltalk-80. Section 4 describes
two transformational approaches for implementing specifications in SmaUtalk-80. Finally,
Section 5 offers some brief conclusions.

2. JACKSON SYSTEM DEVELOPMENT

2.1 Dakmnd

JSD is a method for developing software systems. The method covers much of the
software life-cycle, starting from an existing system requirement and proceeding through
to a fully implemented system (Figure 1).

*

Figure 1. JSD Overview

The approach is systematic in that it decomposes the development task into well
defined stages. In particular, there is a distinct separation between specification and
implementation 13]. The starting point in JSD is the development of a model of the real

OCCAM Ls a reiswud ma nwk of the DEMOS gMt-p of Ceo mun

UNCLASSI FI ED/UNL IMI TED

UNCLASS I F I ED /UNL I M I TED

AC/243(Panel 11)TP/1 A.4.4

world subject matter on which an abstract system specification will be based. Functions
are then built upon that model to produce the required input/output activities of the
system. Finally, the specification is transformed to produce an implementation of
acceptable performance.

2.2 Modelling

The model is a representation of the real world within which the system to be built
exists [4,51. "The JSD insistence on starting development by explicitly modelling the real
world ensures that the system user's view of reality is properly embodied in the
specification and, eventually, in the structure of the system itself." [1] The real world
model scopes a system by implicitly defining what possible functions the system can
support. The model itself is represented by a set of disconnected sequential processes. A
sequential process expresses the possible time ordering of external real world events,
called actions, using three basic components: sequence, iteration and selection. A time-
ordered set of actions which some real world object suffers or performs is called an entity
life history and represents all possible (valid) orderings of the real world actions.
Actions generate messages which are read by the system's model processes, which
themselves correspond to the entity life history models. These processes then (partially)
execute and thus synchronise themselves with the dynamics of the outside real world
(albeit always inevitably lagging behind [I). In addition, all data about which the system
is to provide information is local to these model processes.

2.3 Spscification

The system model on its own provides only an abstract simulation of the real world
subject matter under investigation [4]. Functional processes are connected to model
processes producing either system outputs or events not explicitly available in the real
world; the latter generate additional inputs to the model processes. Other processes
capture data generated by the real world actions and then, after error checking, pass it on
to the relevant model processes. Processes are connected to. and communicate with, each
other by reading from and writing to ideaised FIFO buffers called datastreams, and by
inspecting each other's internal states or state vectors. Datastream communication is
asynchronous; a process is not blocked on writing a record to a datastream, but a process
is blocked when reading from a datastream that is empty. State vector inspection, which
provides an additional means of communication, is a read-only access mechanism that
perTits one process to inspect the state of another. The inspection itself does not
interrupt the inspected process.

UNCLASS I F I EDIUNL I MI TED

UNCLASSI FI ED/UNLIMITED

A.4.5 AC/243(Panel 11)TP/1

Overall, the specification phase produces a network of asynchronously
communicating sequential processes. This network is essentially an abstract system
architecture, the other main constituents of the specification being the descriptions of
processes. An important characteristic of a JSD specification is that it is in principle

executable using suitable interpreters. This operational characteristic of JSD
specifications [61 can givie developers an early preview of how the system will behave
when implemented. Operational approaches such as JSD can therefore lead potentially to
a reduction in the overall cost of development since verification of a system's functional
behaviour can take place at an earlier stage than usual [7].

2.4 Implementation

JSD U,,es a system specification directly to generate the desired implementation [4].
This transformational approach ensures that the integrity of the specified system does not
become corrupted during the implementation phase [1]. Two major transformation
techniques used in JSD are inversion and state vector separation. There are other
transformational techniques, such as dismemberment, but discussion of these lies
outside the scope of this paper.

Inversion. which is typically applied in conjunction with state vector separation. in
its basic form converts an asynchronous producer-consumer process pair into a routine
and re-entrant subroutine that are behaviourally equivalent to two coroutines [8,91. When
the re-entrant subroutine is invoked, it resumes execution from where it last left off.
Partial execution takes place, updating internal states, until the process suspends itself.
The re-entrant subroutine's suspend points are associated with the original read (or
write) operations on its connected datastream, which the inversion transformation
removes.

JSD specifications often contain many instances of a process type, all of which are
executing concurrently. They are each identical in structure. but their local states will be
different. These many instances can be implemented by having one copy of the process
text and many copies of the state vectors. Thus, each process is implemented by
separating its state vector from its sequential procedure.

State vector beparation and inversion enable an entire specification to be
implemented on a single machine if desired. Each instance of a process type can run on
the same processor by storing is many state vectors in a 'database' and using the
stateless re-entrant subroutine to update a loaded state vector during its executior" at the
next susp-:nd point the (possibly updated) state vector is written back to the database.
To make s,re that each process in the specification gets. its proper share of .processor

UNCLASS I FI EDIUNL IMI TED

-r

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TP/1 A.4.6

time, special-purpose scheduler processes are designed, which implement any special
timing constraints that the system must satisfy.

3. OBJECT ORIENTED PROGRAMMING

This brief overview of object oriented programming is based on Smalltalk-80, since
Smalltalk-80 was the first system to popularise the object oriented paradigm [10] and is
the implementation environment for the transformations described in Seztion 4. The
following features can be said to typify an object oriented system:

i. Objects
ii. Inheritance

iii. Message Passing
iv. Persistence

3.1 O

Encapsulated data abstractions minimise interdependencies among separately
written modules by defining strict external interfaces 1ill. The more rigorous the

encapsulation re,:hanism used in a system, the less chance that changing one part of it
will adversely affect another. The encapsulation mechanism in object oriented systems is

the object. An object is composed of two parts: an object state, represented by some

internal variables called instance variables: and functionality, represented by a set of

procedures or methods. A method is a modularised set of operations which normally
operates on the instance variables of the object in which the method resides. From the
Smaltalk-80 point of view. data abstractions and encapsulation are knitted together very
closely. The encapsulation mechanism enforces interaction with an object via its external

interface or protocol.

3.2 Inheritance

In Smalltalk-80 and most other object oriented languages, a class, which is the
templating mechanism for creating objects. is always a subclass (and specialisation) of
another class. For this subclassing mechanism to function, the classes are (usually)

arranged in a hierarchy in which every object is an instance of just one class. This is

single inheritance. Multiple inheritance is a generalisation that allows a given class to
have more than one immediate superclass (i.e. the inheritance hierarchy is not a pure

tree). In Smalltalk-80. all objects inherit properties from class cbject at the top of the

hierarchy, and hence otje:t describes the default behaviour of all objects [121.

UNCLASS I F I ED /UNL I M I T ED

1

UNCLASSI FI ED/UNLIMITED

A.4.7 AC/243(Panel 11)TP/1

Inheritance enables a programmer to adopt a software reuse approach in writing
programs, creating new objects from existing ones. "The fundamental idea of inheritance
is that new software elements may be defined as extensions of previously defined ones;

existing elements do not have to be modified when used as a basis for new definitions."

[13]

3.3 Message Pain

Message passing is pre-requisite in overcoming the inevitable combinatorial
explosion of routine complexity in extendable polymorphic systems. Conventionally, a
routine is polymorphic when it is type-generalised. This ability to abstract over types [14]
enables programmers to produce generalised software components [151. With the
development of the message passing metaphor, the burden of doing explicit type checking
and type dispatching disappears by making the routines themselves monomorphic and
embedding them within system types (i.c. classes) [161. Within this metaphor, all
processing activity is initiated simply by sending messages to objects; processing activity
proceeds inside objects themselves [19]. In Smalltalk-80, this object-message metaphor
is used uniformly throughout the system, giving a simple but very powerful approach to
programming [15,181.

3.4 Persistence

The persistent model of data underlies many current object oriented programming

languages [171. Persistence is an abstraction over the time that a piece of data is
required and usable [14]. In conventional programming systems, the persistence of each

data item has to be specifically handled by the programmer via the two persistent
mediums available, files and databases. The separation of long-term from short-term data
(stored in program variables) incurs a cost overhead in the development of large scale
systems [19). This overhead is reflected by the fact that files are unable successfully to
store structured entities which reside in dynamic memory [201. Usually a transformation

is required to 'flatten' dynamic memory structures in order to store them in files.

Smalltalk-80 has a weak form of persistence in the form of its 'virtual image' in which
all objects persist. This enables object states to be preserved between sessions of
execution. However, in order to guarantee such persistence, the virtual image has to be
explicitly saved ('snapshot'), by writing to disc a complete binary copy of the dynamic

memory [21,22).

UNCLASSI F! ED/UNLIMITED

UNCLASS I F I ED/ UNL I M I TED

AC/243(Panel l1)TP/1 A.4.8

4. TRANSFORMATIONAL STRATEGY AND ITS IMPLEMENTATION

4.1 O

The main decision with which JSD specifications present the implementer is whether
to remove the concurrency expressed therein [23], depending upon the implementation
environment. Smalltalk-80 provides an object of class Process and so a concurrent
implementation would appear to be the logical choice. However, Smalltalk-80 was not
specifically designed to build highly parallel systems (hence the development of
ConcurrentSmalltalk [24]) such as those described by JSD specifications. A second
reason for not adopting a concurrent implementation approach using the Smalltalk-80
Process class is that a transformational strategy should, if possible, be sufficiently
general to achieve implementation in any object oriented language. Since most languages
do not possess process objects, an alternative to generating concurrent implementations
is desirable. These two reasons make concurrency removal from specifications necessary.

As regards state vector separation, the behaviour of object oriented systems
reflects this transformation directly. Each time a new object is created (an instance of a
class), its behaviour (set of methods) is not duplicated because the methods reside in the
object's class. Object creation simply makes a copy of its class's instance variables. This
instantiation mechanism parallels the desired effect of state vector separation in
procedural implementations.

As stated earlier, program inversion architecturally changes a network of
communicating sequential processes into a hierarchy of re-entrant subroutines, i.e.
coroutines. However, most languages including Smalltalk-80 do not possess a coroutine
facility [251, and so the latter has to be simulated using available language constructs. As
a result, conventional realisations of inversion necessitate the extensive use of the 'goto"
statement [8]. Smalltalk-80. however, does not possess this construct. Nevertheless,
inversion can be realised in Smalltalk-80 and the next two sections describe two possible
approaches. The descriptions of these two approaches are brief and therefore necessitate
some working knowledge of Smalltalk-80.

4.2 Smalltalk-80 Context Maninulation

4.2.1 Architecture and 02eration

Architecturally. Smalltalk-80 has two major components: its 'Virtual Machine' (VM)
and 'Virtual Image' (see 3.4). The virtual image is the static representation of Smalltalk-

UNC LASS I F I ED / UNL I MI TED

UNCLASSI F I ED/UNLIMITED

A.4.9 AC/243(Panel 1I)TP/I

80's data structures in the form of objects, while the VM brings the virtual image to life by
interpreting its methods [2]. To achieve method interpretation, two representations are

used: the first, a symbolic format, is the textual definition of methods specified by a user;
the second is a compiled version of these definitions. Compiled methods generated by the

Smalltalk-80 compiler are streams of byte codes suitable for interpretation by the VM.

Every class in the system-has a dictionary of all its compiled methods. The dictionary is

composed of a series of key-value pairs. When a message is sent to an object, the VM

identifies the class of the receiver object and then starts searching that class's method

dictionary for the key specified by the message. When the key is found, the VM interprets

the compiled method associated with that key.

Smalltalk-80's use of the object/message metaphor gives rise to the unusual feature

of making the VM's runtime state (consisting of method activations or continuations

[261) visible to the programmer as data objects [271. In Smalltalk-80 terminology,

continuations are called contexts [2]. When a message is sent to an object. a new

context is created by the VM for the associated method activation. Since all processing
throughout the system is accomplished by sending messages, there will be many contexts

in the system at any one time. The context associated with the method currently being

evaluated is called the active context. When the method associated with the active

context evaluates a message send to an object, the active context is suspended and a
new context is created and made active. The active context stores the context which

activated it; the latter is called the active context's sender (which is akin to a procedure's

caller in procedural languages). Sender contexts resume when active contexts terminate.
Access to active contexts is possible via the pseudo-variable thiscntext [2]. (NB.

pseudo-variables are variables available in all methods but which cannot have anything
assigned to them eg. self, super, true, false, ni.). Contexts held in thisContext

are first-class objects and so can be treated like any other object in the system. They

offer a protocol allowing inspection/alteration of program counter, stack pointer, changing

of sender. etc. and are used extensively by the system debugger. By manipulating
contexts, it is possible to build an object which behaves like a re-entrant procedure [26].

The following describes how this is done.

4.2.2 Re-entrant Procedures

Consider the following Smalltalk-80 code. The me'hod controlmethod sets a
counter to zero and then creates a new instance of class ReEntrantObject; this

instancehas the message ,oop sent to it. Once control returns back to controHethod,
there follows an iteration which increments the counter per repetition; the important
statement in the iteration is where the instance of ReEnt rantObject is sent the message
resume. Loop is a method defined in Relnt rant Object which simply sets a counter to

UNCLASSI F I ED/UNLIMITED

1

UNCLASSI FIED/UNLIMITED

AC/243(Panel 11)TP/1 A.4.10

zero and then iterates forever; the important construct here is the suspend construct. Loop

returns to controlMethod at the point self suspend; it will continue execution whenever
resumed from controlMethod immediately after self suspend. The suspend method
returns control to its sender but saves its current context. The resume method loads a
saved context and then continues execution with the loaded context.

controlkethod loop

I rObject count I I count I
count -- 0. count +- 0.
rObject +- ReEntrantObject new. [true]
rObject icop. whileTrue:

[count < 101 [count +- count + 1.
whileTrue: self suspend]

'rOtjec- resume.

count +- count - !)

Implementation of suspend (in class ReEntrantObject) saves a modified copy of the
current context in an instance variable of class ReEntrantObject called savedContext;
the modification effected is to increment the saved context's program counter by one.
Method resumption using -e5..e is implemented as follows. Sending the message
resume to an instance of Re.:-.rsnto-%:'ez creates a new resume method context. This
newly created context has its sender context changed to the one saved in savedContext.
Thus, when the resum.e method returs. it will not return to the sender context in which it
was activated, but to the point after the suspend message send in the saved context.

4.2.3 Problem,.

In theory, the to methods s;spend and resume should enable the realisation of the
inversion transformation. However, when these are implemented in Smalltalk-80. sending
resume to an instance of FeEn. rant,'t ect many times causes the VM consistently to
crash. The exact reason for this unwanted behaviour is still unknown. One possible
explanation is in the way contexts are handled in the VM implementation [28). In order
for Smalltalk-80's performance to be acceptable, the VM uses some special optimisations
relating to context manipulation (the optimisation gives an eight-fold increase in VM
performance [271). Instead of creating a new context object at every message send, the
VM creates a standard procedure activation which is pushed onto its internal stack
129,30). When a method returns. the internal activation is popped off the stack. Only
when a context needs to be explicitly used does the VM convert it to a real object. This
optimisation of having multiple representations of contexts [271 in the VM is being
exposed in the implementation of re-entrant objects as described here. The conclusion to
be drawn is that although contexts are in principle first-class objects. as implemented

UNCLASS I F I ED/UNL I MI TED

UNCLASSIFIED/UNLIIMITED

A.4.11 AC/243(Panel ll)TP/1

they are not.

4.3 Followsets

4.3.1 Followset Definition

The term followset is the name given to the collection of all valid state transitions a
process can next undergo from any given state [31]. It is possible for the complete
semantics of a process, as depicted in structure diagrams (see Figure 2), to be
represented by followsets.

~-~A £OMI oft 00 wts

A Mafs ofZVO

wu a o E
A a .5 aw a w 0

we~C &'eG"a)

, *rwP.ow , * tf ,

Fu 2. Stcur *of a pc Bo.o

C s51*. l eWtl UtPA.p ms*,Tp.,owt. - PIr'l e ;: a, P?*$C.:iU31 0? .flEUtfC?,lila1ti

I N C L A S S I F I4h0,PC at?,

P";~OdfePtI , • "- POV*?t.. rp.~I~

P e t* S

Figue 3. Definition of FIRST and FOLLOW

The technique for followset generation from structure diagrams is taken from the

UNCLASSIF IED/UNLIMI TED

UNCLASSI F I ED/UNL IMI TED

AC/243(Panel 11)TP/1 A.4.12

development of predictive parsers in compiler theory [32]. Basically, two functions FIRST
and FOLLOW are repeatedly applied to each node in a structure diagram, generating sets
of possible leaf node states. FIRST and FOLLOW's definition are different for each node
type and are in the form of calls to each other (see Figure 3). From the followset trace
shown in Figure 4, which is obtained by applying the rules of Figure 3 to the process
structure in Figure 2, it is possible to deduce the next valid set of states to follow any
given state in the 'Book' process by evaluating FOLLOW(givenState). This ability to
derive systematically the next valid state set can be used as the basis for implementing
inversion.

• tl~-
g VtRSACOUIIItI - Tn.e b±

3SACQIZ - A C*- ,.o a
F:- F:RS- A S:nS I : -- :

F:$;,AIS: ! * .A : fl. -CL Se a
rC .MLlw,- FSIM - v:atS1ILmAJIPl - ile b.p **lI AJ PT) I Frt:lS.i.rC , Or raLu I4C.M PAT, - rz.e di

FIN s., - rz msT I Ui - rule O
F~T311SLE.lJo - I*.i - ru~e a
?OLULC MP OIIt, r *PSTIWDPAT) - ru1e I..±
• :*l1S-1Wll'AP-:tL .ST ISE?$1L) or FIAST4CISPOSE r..e Cl

, r:*stS .. j or rR:si 1:s-csE ru.e 0 C

.CLLsA tVT='l, - rL.. -..;RP a
-P .p91W *::SPOSE - ?ue *

.*S(IT. - Y,I ONL¢I - ru~e •

C",S'. C.A a - r:.s- 't£1,= - r.,e a
?I3S It-9, * *ZR.. - r e Vill

tr~lS**,k.'A~tY * r S ,E Cr F: r:S 7:SOSLOA1 - :..@ 01.
-MEmTw. rule .a

-~S 's * :u;s[-a. - 0•1

t :.a l:l[_'" ' ,- ,- et i. it

O., S .* •

.I Sp , : 1 - Z Ae
es F a OLL OW LAS Y - {LEND, r: 7LPAPDI -SP.S he

UN L-S EDI NLI - TED.

-*.L- --;k blI
-c L-a ru,: f

F l~- D.&P3U r C;

FISIfawk :95s uz:G;1N1
r- 1,#41: bry.9

Uxt..1. SELL.. ZISPOSE>

Figure 4. Fol lowset trace of the 'Book' process
4.3.2 Gur

Associated with each state in every set of states is a guard representing the
conditional operations associated with selections and iterations in a process's structure.
Guards are necessary in order to resolve which actual state in a set of states is to follow
Ai given state. For example. FOLLOW(CLASSIFY) = (LEND, SELL. DISPOSE); the
members of this followset have three guards g(LEND). g(SELL) and g(DISPOSE)
respectively. Each guard when evaluated indicates whether or not the associated state is

U NC L AS SI F I ED/U NL I MI TE D

UNCLASSIFI ED/UNLIMITED

A.4.13 AC/243(Panel 11)TP/1

the next valid one. Because JSD process semantics are completely deterministic, it is not
possible for two or more guards associated with a followset to be true simultaneously. By
a simple modification to FIRST and FOLLOW, guards can be derived automatically in situ
of followset generation.

Followsets and their associated guards possess operational semantics similar to
re-entrant subroutines. Via a simple algorithm or execution harness, the behaviour of a
re-entrant routine can be simulated.

4.3.3 Smalltalk-80 realisation

Figure 5. JSDpOcese ralse a bCsW JSmalak8 lse

P y JSD spc85fc aook ae aid s Smla- se: hs

",IC .&me Vas.tDG N4.A*O ; 6 r -0

Jat

classes all have user-defined primitive operations (associated with leaf nodes in structure
diagrams) and conditions (associated with selection and iteration nodes) as methods.
together with a set of methods for guards. These classes have two class instance
variables. int~ances a folloveet, to store the instances of the class and the inverted
process's followset representation respectively see Figure 5. Each class instance has

two instance variables, suspended And state-denoting whether the process. can run and

U NCLASS I F I EO/UNL I M I TED

UNCLASS I F I ED/ UNL I MI TED

AC/243(Panel 11)TP/1 A.4.14

what its current state is.

Although communication is by the standard Smalltalk-80 message sending
mechanism, in order to achieve process execution using the harness, a universal message
interface needs to be used. Thus. all inverted process-to-process communication is
accomplished by a write message and its derivatives. Using that message, inverted
processes write to each other via their classes, since the latter are the repository for all
instances. When a class receives a write message, the following takes place:

O Find the appropriate process instance (specified in the write message
parameters)

@ Using the process's current state (held in state), access the relevant followset
(held in the class instance variable followset)

o For each state in the set, evaluate the associated guard functions until one
returns true

o For the state which has a true guard, evaluate the code associated with that
state

o Set the process's state to the new state
Repeat steps @ to 0 until the process suspends (instance variable suspended

becomes true - see below).

When inversion is realised in conventional languages, the usual technique adopted
is to replace read and write statements with returns and calls. Using a highly polymorphic
environment such as Smalltalk-80. the technique adopted is to change the semantics of
read and write. This results in read messages simply setting the process's instance
variable suspendoec to true and the write messages invoking the execution harness. Thus,
although read and write messages appear in code evaluated at step 0, the act of reading
and writing in the sense of asynchronous process communication has disappeared.

As regards state vector inspection, the implementation of this mechanism in object
oriented systems is reduced to objects simply returning themselves via the seif pseudo-
variable; all that needs to be provided is access to an object's instance variables. A
process needing access to all state vectors of another process sends a getsv request to
the process's class: the class simply returns the entire collection of instances of itself.
However, when a qetsvc f: request is sent to a class, the actual instance specified by a
parameter of this request is returned.

UNCLASSI F I ED/UNL IMITED

UNCLASS I F I ED/ UNL I MITE D

A.4.15 AC/243(Panel 11)TP/1

5. CONCLUSIONS

Of the two tra isformational systems described in this paper, namely context
manipulation and followsets, the former is the more efficient since it does not need any
type of harness in which to operate (except for the virtual machine). Context manipulation
as a means of achieving inversion is not a general implementation, however, since most
languages do not permit manipulation of procedure activation states. In contrast,
followsets are a general implementation of inversion, with the added advantage of not
having to rely on the 'goto' primitive. As such, therefore, followset transformations can
also be used to good effect when implementing JSD specifications in languages such as
Occam.

The construction of transformations mapping JSD specifications into object oriented
architectures such as Smalltalk-80 leads to two additional capabilities:

I

" Direct implementation of specifications in object oriented languages like
Smalltalk-80:

" Rapid specification prototyping.

As regards the latter. Smalltalk-80 has been viewed as a rapid prototyping
environment 134,351. Given that it is now possible to transform JSD specifications into
this environment, the behaviour of such specifications can be observed early on in their
development. Such a facility realises, to considerable advantage, the truly operational
nature of JSD 16.71.

6. REERNE

1 Jackson M.A. 'System Development'. Prentice-Hall. 1983.
2 Goldberg A. & Robson D. 'Smalltalk-80. The language and its implementation'.

Addison Wesley, 1983.
3 Renold A. 'Jackson System Development for Real Time Systems', Scientia Electrica

(Switzerland), vol. 34., no. 2. pp. 3-43. 1988.
4 Cameron J. 'An Overview of JSD'. IEEE Transactions on Software Engineering, vol.

SE-12. no. 2. pp. 222-240. 1986.
5 Cameron J. 'The Modelling Phase of JSD'. Information and Software Technolor.y

(UK). vol. 30. no. 6, pp. 373-383. 1988.
6 Zave P. "The operational approach versus the conventional approach to software

development'. Communications of the ACM. vol. 27, no. 2, pp. 104-118. 1984.
7 Agresti W.W. What are the new Paradigms', in: New Paradigms for Software

Development. IEEE Computer Society, pp. 6-10, 1986.

UNCLASSI FlED/UNLIMITED

UNCLASS I F I ED /UNL I MI TED

AC/243(Panel 11)TP/ A.4.16

8 Storer R. 'Data-driven software design using inversion'. Information and Software
Technology (UK), vol. 30, no. 2, pp. 99-107, 1988.

9 Sanden B. 'An Entity-Life Modeling Approach to the Design of Concurrent Software',

Communications of the ACM, vol. 32, no. 3, pp. 330-343, 1989.
10 Rentsch T. 'Object oriented programming', ACM SIGPLAN Notices, vol. 17, no. 9,

pp. 51-57, 1982-
11 Snyder A. 'Encapsulation and Inheritance in Object-oriented programming

languages', Proceedings of OOPSLA'86, ACM SIGPLAN Notices, vol. 21, no. 11,
pp. 38-45. 1986.

12 Ingalls D.H.H. 'Design principles behind Smalltalk', BYTE, vol. 6, no. 8, pp. 286-298.
1981.

13 Meyer B. 'Genericity versus Inheritance', Proceedings of OOPSLA'86, ACM
SIGPLAN Notices, vol. 21, no. 11, pp. 391-405, 1986.

14 Morrison R., Brown A.L., Carrick R., Connor R.C.H., Dearie A. & Atkinson M.P.
'Polymorphism, persistence and software re-use in a strongly typed object-oriented
environment', Software Engineering Journal, vol. 2, no. 6. pp. 199-204, 1987.

15 Harland D.M. 'Polymorphic Programming Languages - design and implementation'.
Ellis Horwood, 1984.

16 Ingalls D.H.H. 'A Simple Technique for Handling Multiple Polymorphism',
Proceedings of OOPSLA'86. ACM SIGPLAN Notices. vol. 21, no. 11, pp. 347-349.
1986.

17 Wolczko M. 'Semantics of Object Oriented Languages', PhD Thesis, University of
Manchester. 1988.

18 Ungar D. & Smith R.B. 'Self: The Power of Simplicity', Proceedings of OOPSLA'87,
ACM SIGPLAN Notices. vol. 22. no. 12, pp. 227.242, 1987.

19 Atkinson M.P., Bailey P.J., Chisholm K.J.. Cockshott P.W. & Morrison R. 'An
Approach to Persistent Programming', The Computer Journal, vol. 26, no. 4, pp. 360-
365, 1983.

20 Harland D.M. 'REKURSIV object oriented computer architecture'. Ellis Horwood.
1988.

21 Low C. 'A Shared. Persistent Object Store', in: ECOOP'88, Proceedings of the
Second European Conference on Object-Oriented Programming. pp. 390-410, 1988.

22 Straw A.. Mellender F. & Riegel S. 'Object Management in a Persistent Smalltalk
System', Software Practice and Experience, vol. 19, no. 8, pp. 719-737, 1989.

23 Hull M.E.C., Zarea-Aliabadi A. & Guthrie D.A. 'Object-oriented design, Jackson
system development (JSD) specifications and concurrency', Software Engineering
Journal. vol. 4. no. 2, pp. 79-86, 1989.

24 Yokote Y. & Tokoro M. 'Concurrent Programming in ConcurrentSmailtalk', in: Object
Oriented Concurrent Programming, pp. 129-158. MIT Press, 1987.

25 Haynes C.T., Friedman D.P. & Wand M. 'Obtaining Coroutines with Continuations*,

UNCLASSIFIED/UNLIMITED

.

UNCLASSI FI ED/UNL IMITED

A.4.17 AC/243(Panel 11)TP/1

Computer Languages. vol. 11, no. 3/4, pp. 143-153. 1986.

26 Haynes C.T. & Friedman D.P. 'Embedding Continuations in Procedural Objects',
ACM Transactions on Programming Languages and Systems, vol. 9, no. 4, pp. 582-

598, 1987.

27 Deutsch L.P. & Schiffmann A.M. 'Efficient Implementation of the Smalltalk-80

System', ACM SIGACT/SIGPLAN Proceedings of the Eleventh Annual Symposium

on the Principles of Programming Languages. pp. 297-302, 1984.
28 Moss J.E.B. 'Managing Stack Frames in Smalltalk', Proceedings of the SIGPLAN'87

Symposium on Interpreters and Interpretive techniques, ACM SIGPLAN Notices,
vol. 22, no. 7 , pp. 229-240, 1987.

39 Miranda E. 'BrouHaHa - A Portable Smailtalk Interpreter', Proceedings of

OOPSLA'87, ACM SIGPLAN Notices, vol. 22, no. 12, pp. 354-365, 1987.
30 Baden S.B. 'Low-Overhead Storage Reclamation in the Smalltalk-80 Virtual

Machine', in: 'SmalltaJk-80 Bits of History. Words of Advice', pp. 331-342, Addison
Wesley. 1984.

31 Stirling C. 'Follow Set Error Recovery'. Software Practice and Experience, vol. 15,
no. 3, pp. 239-257, 1985.

3 Aho A.V. & Ullman J.D. 'Principles of Compiler Design'. Addison Wesley, 1979.
33 Jackson M.A. 'Information Systems: Modelling. Sequencing and Transformations', in:

On the construction of progrims, pp. 319-341. Cambridge. 1980.
34 Alexander J.H. 'Exploratory Application Development using Smalltalk', Tektronix

Computer Research Laboratory Technical Report no. CR-85-16, 1985.
35 Diederich J. & Milton J. 'Expenmental Prototyping in Smaltalk', IEEE Software, vol.

4. no. 3, pp. 50-64, 1987.

UNCLASSI F I ED/UNL IMITED

I

NATO UNCLASS IF I ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:

UNCLASSIFIED/UNLIMITED
AC/243(Panel II)TP/1 5. Date: 6. Total Pages:

1 15.04.91 10
7. Title (NU):

Formal Specification and Requirements

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
Patrick R.H. Place - William G. Wood

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
Software Engineering Institute Defence Research Section
(Sponsored by the US DoD) NATO Headquarters
Carnegie Mellon University B-111O Brussels
Pittsburgh Belgium
PA 15213-3890 (Not a Distribution Centre)

United States
12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

FORMAL SPECIFICATION, REQUIREMENTS, SYSTEM DEVELOPMENT

14. Abstract:

This paper describes recent work at the SEI comparing three
formal methods. We specified an example avionics problem using each
method and used these specifications to evaluate the methods. The
creation of the specification enabled us to understand, expose gaps
in, and clarify amiiguities In the given requirements. We conclude
with the results of our evaluation of the methods and reasons why we
consider the formal restatement of the requirements to be an impor-
tant part of system development.

U UNC LA S S IFIE D/U N LI MI TE D

A.5.1 AC/243(Panel 11)TP/1

FORMAL SPECIFICATION AND REQUIREMENTS

Patrick R.H. Place' William G. Wood'

April 2. 1990

1. INTRODUCTION 1

2. FORMAL METHODS BACKGROUND 1

3. OUTLINE OF APPROACH TO FORMAL METHODS EVALUATION 3

3.1 Practical Use.. 3

3.2 Evaluation Criteria............... 4

3.3 The Sample Problem..4

3.4 Mlethods Evaluated.. 5

4. EVALUATIONS 6

5. THE PROBLEM REQUIREMENTS REVISITED 6

6. CONCLUSIONS 8

'MNembers of Technichal Staff at Softwvare Enitineering institute i Sponsored b, the U.S. Department of Defense).
Carnegie Mellon University. Pittsburgh. PA i3213. USA.

U N C L A S S I F I E D IU N L I M I T E D

AC/243(Panel 11)TP/1 A.5.2

Abstract

This paper describes recent work at the SEI comparing three formal methods. We specified
an example avionics problem using each method and used these specifications to evaluate the
methods. The creation of the specification enabled us to understand, expose gaps in, and
clarify ambiguities in the given requirements. We conclude with the results of our evaluation
of the methods and reasons why we consider the formal restatement of the requirements to be
an important part of system development.

1. INTRODUCTION

One of the mujor problems with software iitensive systems is the inadequacy of the system
and software specification. The requirement documents usually define the major functions of
the system or software adequately, but many of the details which should be drawn out. cleared
up. and solidified in a more detailed specification are never seriously addressed, leading to flaws
in the later implementation stages. The cost of fixing specification flaws detected at later stages
in the life cycle is much greater than the cost of detecting and fixing them at the specification
stage. Hence, it is important. as the first phase of development, to produce precise. complete.
and consistent specifications of system operation from the requirements documents.

There are a number of techniques and languages that go by the term formal methods. These
methods have a number of advantages over the methods currently used for system specification.
The advantages of formal methods are: the precise definition of details at an appropriate level
of abstraction, the ability to reason about properties of the representations derived. the ability
to gain a detailed understanding of the operation of the system, and the ability to refine these
specifications to lower leveis and verify that the refined representation satisfies the specification.

This paper describes our recent work at the Software Engineering Institute in the use
of formal methods to specify systems. Ve provide some background discussion in the use of
formal methods to specify systems, discussion of our comparison and evaluation of three formal
methods, and the results of our evaluations. We then discuss the problem requirements in light
of the formal specifications: this discussion comments on ambiguities in the original requirements
and the ways in which minor chane to the requirements could lead to a simpler system.

2. FORMAL METHODS BACKGROUND

Historically. mathematics has been the basis for modeling physical and conceptual systems.
The use of mathematics increases our understan iing of these systems, provides a mechanism for
unambiguously communicating ideas about systems, and allows us to predict their behaviour
using mathematical models. The predictive capability allows an engineer the luxury of finding
and correcting faults in a model without building a full scale product. The mathematics for
modeling the behaviour of software objects is still primitive, and work needs to be done within
this field. Formal metiods are firmly based on well known branches of mathematics. such as set
theory. functions. alzebra. varinus locics. and process algebra. and which have been used to model
system behaviour. There are formal methods cov-ring all aspects of software development, but
our interest is in formal specincation methods. A rview of various formal methols. including

UNCLASS IF I ED /UNL I MIT ED

UNCLASSI FI ED/UNLIMITED

A.5.3 AC/243(Panel 1l)TP/1

a description of where each method fits in the life cycle, has already been done by the Software
Productivity Consortium [6].

Formal specification methods are generally classified as being appropriate to the specifica-
tion of either sequential or concurrent systems.

Sequential systems generally terminate and perform computations where the output is
determined by the input at the start of the computation. Examples of sequential methods are:
Z [14], which was developed by Abrial and others at the Programming Research Group (PRG) at
Oxford University: the Vienna development method (VDM) [5], which was developed at the IBM
research labs in Vienna by Bjorner. Jones. and others; and Larch [31, which was developed at
MIT. A comparison of these and many other sequential formal methods and their characteristics
has been made by Sannella [13].

Concurrent systems are generally characterised by computations that run continuously, and
are dependent on interactions with other computations and with changes in external conditions.
Examples of concurrent methods are: communicating sequential processes (CSP) [4], which
was developed by Hoare at PRG in Oxford: temporal logic (121, which was first proposed as
a method for reasoning about concurrent programs by Manna and Pnueli at the Weizmann
Institute of Science: and the calculus of communicating systems (CCS) [7], which was developed
at Edinburgh University by Milner.

As with all engineering decisions, applying formal methods to a problem depends on the
benefits of using formal methods over the benefits of using other methods. Formal methods will
be used not because some zealots believe that they are the latest -silver bullet" of the software
world, but because they provide distinct advantages over using other methods. and commercial
pressures cause their usage. A general discussion comparing formal and traditional methods
and their application to avionics systems has been presented by Wood [16]. The present paper
concentrates on the use of formal methods as a means of restating the system requirements in
a, clear, concise, precise and consistent manner and the advantages of such a restatement.

Developing systems using formal methods provides confidence that the system implemen-
tation satisfies its requirements.

(1) The software developer is forced to be more rigorous in specification of the requirements,
and the customer is therefore obliged to consider more details of operation early in the life
cycle. Hence. formal software development starts from a more complete basis.

(2) The specification produced by these methods can be demonstrated to be -onsistent, since
the methods support mathematical manipulations to prove or disprove consistency between
parts. Both completeness and consistency can be lemonstrat-d early in the life cycle.

(3) The specification serves as a communication between the specification stage, describing
what the system is to do. and the design stage. describing how it is to be implemented.

(4) Implementations can be proved to be eo'ret against the specifications.

We are not. naively, stating that formal software development dos not have problems.
Most of the tools supporting formal m-thods are research prototypes. and demonstrating con-
sistencv and correctness can only be done on a small scale. Software engineers and managers are

UNCLASSI FI ED/UNL IMITED

UNCLASS I F I ED/UNLIMI TED

AC/243(Panel ll)TP/1 A.5.4

suspicious of specifications using -funny mathematical notations", and are not yet comfortable
with a declarative style of representation. since most of their professional experience is with
procedural languages. However, we consider the benefits of using formal methods to outweigh
these nroblems.

Systems witn high cost-of-failure characteristics require a higher assurance of safety and
integrity than can be confidently achieved using non-formal techniques. If poor software can
cause life-threatening accidents or substantial financial losses, or can yield unauthorised access
to private information, or can cause loss of services at critical times, then the software should
be specified and implemented in an extremely careful manner. Formal methods represent the
most careful software development methods currently known. Hence formal methods are most
applicable to systems with a high cost of failure, and are starting to be used in such a manner.

3. OUTLINE OF APPROACH TO FORMAL METHODS EVALUATION

The experiences reported in this paper were gained through the evaluation and comparison
of three formal methods. This section outlines the work performed. We visited method devel-
opers and users to discover examples of the practical application of formal methods. Before we
started evaluating the methods, we developed evaluation criteria and selected a problem and
the methods to be investigated. We specified the problem using each of the methods, evaluated
'he results. and compared the applicability of the different methods.

3.1 Practical Use

We visited method developers to discover new developments in their techniques and to
understand their perception of the state of the practice of formalisms. We visited method
users to discover the nature and size of projects on which they were using formalisms and the
acceptability of the formalisms to their companies. The following is a brief summary of the
conclusions we made during the trips. A more complete summary of our visits is currently being
prepared l1!.

The existence of the UK Ministry of Defence draft standard. MOD 00-55 (8]. which requires
the use of formal methods in the development of safety critical systems. will have an effect
on the software development community, particularly in the UK. Although MOD 00-55 in its
present form may not be an enforc.,able standard, its existenci will ensure that contractors
and researchers will start experiments in the formal development of large scale systems. In the
longer run. we expect MOD ,10-55 to be the basis of an enforceable, and generally acceptable,
standard for the defence contracting community rquiring some level of formality in software
development.

Interest in th.- application of formal methods to a wide range of systems is increasing; there
is a growing number of examples of formal sp-.cifications and some companies are basing their
business upon their ability to formally specify systems.

The belief that formal methods are hard to teach and use is now being shown to be false.
Some universities are introducing formal methods at the very start of the undergraiuate cur-

UNCLASS I F I ED/UNL IMI TED

UNCLASSI FI ED/UNL IMITED

A.5.5 ACI243(Panel 1l)TP/1

riculum. There are examples of staf from commercial development, rather than research, de-
partments successfully applying formal methods as part of their standard system development
practices.

3.2 Evaluation Criteria

We developed classification criteria in order to objectively compare different formal meth-
ods. The creation of these criteria was based on work in tne classification and evaluation of
methods and tools applicable to the entire system development life cycle (2, 151. This work,
however, covered more of the system development life cycle than appropriate for our investiga-
tions and was insufficiently detailed for the classification of specification techniques. Therefore,
we too. the three categories applicable to specification and refined them with appropriate cri-
teria. Our definitions of the categoritxs, with some examples of the criteria follow.

(1) The representation category consists of the concepts of a system that a specification tech-
nique could be used to describe. It is not an exhaustive list of concepts. but rather is a
list of concepts that we consider to be of particular importance. Examples of criteria in
this category are the representation of time and the style of specification employed by the
technique.

(2) The derivation category consists of the ways in which specifications may be created from
other specifications. Examples of derivation techniques are refinement and decomposition.

(3) The examination category consists of the properties that we may wish to show are present
(or absent) in the specification of the system. The types of examination that may be carried
out may be limited by the choice of specification technique. For example. it is possible to
specify a system using a given technique but it is not possible to examine the system
for absence of deadlock. Since the specification is a model of the system. behaviours (or
functions) of the specification are assumed to be exhibited in the system. The criteria in
this category include examinations for properties such as safety and liveness of the system.

3.3 The Sample Problem

We selected the requirements for a generic avionics system as our sample problem. It should
be noted that th? system. although not real. is realistic and suits our purposes in that it is small
enough to be specified in A short space of time. vet large enough to be more than just a "toy"
problem.

Essentially. the requirements describe an avionics system consisting of a mission control
computer (MCC) and a number of levices which provide data to the MCC or pilot displays.
These devices include an air data computer. an inertial navigation system. and a radar. In the
event that a device fails, the requirements state that the MCC will estimate values for the data
based on known conditions and previous values of the data. Further. if a device fails the pilot
must be informed through both displays. A further component of the problem is a waypoint
manager which maintains a list of coordinates: this determines the route that the aircraft must
follow.

UNCLASSIFI ED/UNLIMI TEO

UNCLASSI FIED/UNLIMITED

AC/243(Panel 11)TP/1 A.5.6

This problem was suitable for our purposes in that it consists of a number of independently
acting, cooperating subsystems - the devices, the waypoint manager, the displays, and the
control functions of the MCC. It contains strict timing requirements such as the requirement that
a device failure message must be displayed for at least two seconds on one of the pilot displays.
The waypoint manager introduces a -software device" which has different characteristics to the
physical devices, notably a concentration on the description of a data structure. The possibility
that devices might fail introduces into the system a notion, albeit explicit, of reliability, as well
as the notion of timeouts so as to avoid indefinite delays waiting for info.,!-iation from a failed
device.

The original requirements contained more components; however, these were omitted as they
did not exhibit characteristics other than those of the components described above.

3.4 Methods Evaluated

Our efforts to date have involved the soecification of the avionics problem in three formal
specification tecnniques: CSP. VDM with extensions. and temporal logic. There are many
other currently popular techniques we could have investigated: we chose these three for initial
investigation because they are quite different in approach to system specification and so could
be used to test our classification and evaluation criteria. If we could not use our criteria to
distinguish between these techniques. then we would have to re-examine the criteria.

CSP is an example of a process algebra and is based on the notion that a process is defined
by the possible sequences of observable events in which it may participate. Each observable
event is a synchronous communication between the process and some other process (which may
te the environment). CSP may define a process either constructively, by means of an explicit
model of the possible orders of events, or declaratively, by means of predicates on the possible
sequences of events (known as traces,. It is possible to define a process both declaratively and
constructively and to prove the correspondence (assuming it exists) between the two definitions.

VDM is an example of a nodel-oriented specification technique and was originally developed
for the specification of sequential systems. We have used extensions to VDM [9] which introduce
a model of a history of events in which the system will participate so that we can model the
concurrent aspects of our problem. These histories correspond to the CSP notion of traces.
Specifications written in VDM generally consist of a state (a collection of typed variables and
invariants - predicates describing the relationship between the state variables) and operations
(or functions) which modify the state.

Temporal logic is a particular form of modal logic and is based on the notion that the
operation of a system can be Jescribel as a sequence of states and associated events. Then,
a temporal logic specification of a system consists of a number of assertions using temporal
and predicate logic operators that constrain the allowable states of the system. The temporal
operators permit the specifi'r to constrain the allowable orderings of events of the system. One
of the advantages of the particular temporal logic we used [1] is that a model can be constructed
in a state machine language aginst which all of the temporal formulae may be ch-Cked. thus
providing the specifier with greater confidence in the consistency of the specification.

UNCLASSI F I ED/UNL IMI TED

UNCLASSIFIED/UNLIMITED

A.5.7 AC/243(Panel 11)TP/1

4. EVALUATIONS

The full details of the evaluations are presented in a forthcoming SEI technical report [11];
this section summarises the evaluations.

At first glance. the three techniques seem roughly equal. They each have strengths and
-weaknesses, though in different criteria, as can be seen by examining the evaluations. This
appearance of equality arises from giving each of the criteria equal weight which may not be
appropriate for all classes of system. We believe the avionics system. for example, to be typical
of reactive systems (systems that maintain continuing interaction with the environment and are
generally unlikely to terminate).

For example. one of the criteria in the representation category concerned details of the user
presentation. However. when simply restating requirements on reactive systems. such detail
would be premature. Detailed decisions of the user interface should be left to a later stage in the
system development. In the case of the avionics system. we would have had to create appropriate
displays since this information was not presented in the requirements document. Obviously, if
the system being specified were a user interface system the user presentation specification would
be paramount and the criteria would be weighted differently.,

Another of the criteria in the representation category concerned the manner in which data
structures could be described. However. in the avionics example. there was only one, relatively
uncomplicated data structure (the waypoint manager). We consider this relative lack of de-
pendence on complicated data structures to be typical of reactive systems. The description of
data structures may not be as important a factor in the specification as the description of the
interactions between the subsystems.

In the derivations category. we found that perhaps the most important of the criteria, in
terms of constructing a specification. was the ability to compose pieces of specification to form
a specification of larger systems. Again indicating that a weighting of the evaluation criteria
according to the type of problem (and development approach) is needed.

Finally. with respect to examinations, our visits lead us to believe that the greatest gain
from formal specifications at present is to be made by restating the requirements in such a way
that they may be understood by the entire project team. rather than creating a specification
with all of the properties that could be determined through the examinations we listed.

5. THE PROBLEM REQUIREMENTS REVISITED

One interesting and unexpected (though not harmful) behaviour was the discovery that the
INS and ADC devices could be treated as having identical behaviours. Using the specification
techniques to create an abstract specification of the system makes this similarity in behaviour
obvious. Such a clear statement of common behaviour has benefits for implementation where
communication between the MCC and. say. the IN3 may reuse the cod- implementing commu-
nication between the \ICC and the ADC. In fact. the same communication mechanism could
also be used between the \ICC and the radar. For the purpose of dev-loping our specifications.
we have assumed that all of the devices work in some poll-d manner. This may have been an

UNCLASSIF IED/UNL IMI TED

UNCLASS FI ED/UN LI M IT ED

AC/243(Panel 11)TP/1 A.5.8

incorrect decision on our part. Equally well. the devices could operate by placing somewhere
into memory the required information and potentially reporting their own status. This would
fundamentally change the specification. Were we developing a real system, we would expect to
query the system architects to discover how the devices actually work before progressing very
far in writing the specification.

Another decision we made was to assume that we could use as many timers, of varying
lengths as we need. Again, were we developing a real system specification. we would have to
query the system architects concerning the nature of clock interrupts and the granularity of
:he timers that could be derived. It might be the case that the only interrupt available would
be a simple. cyclically generated pulse. This would fundamentally alter the structure of our
specification.

The second of these decisions may be thought of as a specification convenience, in that it
is possible to model all of tnese independent clocks using a single clock process that generates
interrupts to appropriate processes at the desired intervals. However, the issue of the manner in
which we have assumed that the devices communicate information is a more fundamental issue.
Our specification assumes that the devices have to be polled before they provide information: an
alternative form of communication is one where the device continually updates an information
store read by" the MCC when it needs the information. Such a device behaviour would alter
(perhaps simplify) the structure of the specification, and we would not expect it to be modeled by
the behaviour described in our specifications. In both cases, the act of creating the specifications
exposed the gap in the requirements document early rather than late in the development of the
system.

The requirements referred to the pilot and autopilot steering commands: however, it is not
clear whether these commands are given to. or accepted fiom. the pilot and autopilot by the
rest of the system. We decided that these were commands sent to the pilot and autopilot. The
use of formal specification exposed the ambiguity. Different readers of the requirements made
the different interpretations. This difference was made visible when the formal specifications
were compared.

The requirements stated that the radar display must be updated every 200 msec.. We
used the formal specification to explore three possible alternatives. On the assumption that
the requirements meant that the display had to be updated precisely every 200 ms.. the most
complicated specification was the one that most closely satisfied the requirements. However.
this specification required the use of two timers. which would make a resultant conforming sys-
tem more complicated, place a higher burden on interrupts, and would therefore be harder to
test (or verify) for correctness. We could offer the system architects the alternative specifica-
tions, pointing out the consequences of each of the alternatives, and an appropriate change in
the requirrments could simplify the specification and resultant system, potentially leading to a
cheaper. more reliable system. Using the specifications as models, we could predict the charac-
teristics of the systems and determine which behaviour was most appropriate for the avionics
system.

UNCLASS I F I ED / UNL I M I TED

UNCLASSIFI ED/UNLIMITED

A.5.9 AC/243(Panel 11)TP/1

6. CONCLUSIONS

Our experience with the sample problem gives us confidence that use of an appropriate
formal suecification technique clarifies issues at the specification phase of a system's develop-
ment and that formal specification techniques are applicable to the domain of avionics systems.
Indeed, based on our work and the result of the survey of practitioners, we believe that formal
specification techniques are ready for application to real systems.

Formal specifications provide a good basis for communication between team members.
When we were comparing our soecifications, it was easy to understand exactly what other
authors had written due to the precise nature of the descriptions. Thus, we were quickly able
to see differences between the different specifications and to remove these differences.

There is a growing interest in the use of formal specification, especially in Europe. To
date. formalists in the USA have concentrated on verifying pieces of systems, though there is a
growing interest in the use of formalism for specification.

That the classifications of the three techniques presented in this report showed differences
between the techniques gave us some confidence in our classification criteria as a useful guide to
distinguishing between soecification techniques.

There are differences between specification techniques. The choice of formalism will affect
the structure of the specification, which will in turn probably bias the program developed from
the specification. Thus. the initial choice of specification technique is a very important step in
the development of a system.

Based on our specifications. we would choose CSP for the specification of reactive systems.
However. we do not consider that CSP is so much better than temporal logic that developers
already versed in temporal logic should switch to CSP. Ve did not consider VDM to be par-
ticularly well suited to the specification of our avionics problem. though the VDM evaluation
may have been adverselv affected by the VDM specification following the CSP specification too
closely. A second issue is that we have not considered the process of constructing a design
from the specification. It is unclear how to construct a system design from a CSP specification.
whereas the use of state machine models and temporal logic provide a more familiar method for
the construction of a design. So although we prefer CSP for the construction and manipulation
of a specification. considering the entire development life cycle, temporal logic may prove to be
a more worthwhile approach.

Finally. the restatement of the requirements helped us to understani the avionics system
and to prepare a description of the system that is precise and consistent. The creation of
the formal specification helped us to identify commonalities in components. to expose gaps in
the requirem.nts. and to explore alternate possibilities for system components. The formal
specification is consistent with our intuition concerning the avionics syst.tm and is a suitable
starting place for the design process.

UNCLASSI F I ED/UNLIMITED

UNCLASS I F I ED/ UNL I M I TED

AC/243(Panel 11)TP/1 A.5.10

References

[1) E. M. Clarke and 0. Griimberg. Research on Automatic Verification of Finite State Con-
current Systems. Annual Review of Computer Science, pages 269-289, 1987.

[2] R. Firth, W. G. Wood, R. Pethia, L. Roberts, V. Mosley, and T. Dolce. A Classification
Scheme for Software Development Methods. Technical Report CMU/SEI-87-TR-41; DTIC:
ADA 200606. Software Engineering Institute. November 1987.

[3) J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in Five Easy Pieces. Technical report.

Digital Systems Research Center, July 1985.

[4[C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall. 1985.

[5[C. B. Jones. Systematic Software Development Using V1DM. Prentice-Hall. 19S6.

'G' J. A. N. Lee and K. A. Nyberg. Strategies for Introducing Formal Metiods into the Ada
Life Cycle. Technical Report SPC.TR-88-002. Software Productivity Consortium. January
1988.

T' R. Milner. Communicatzon and Concurrency. Prentice-Hall. 1989.

[S, MOD-00-55. Requirements for the Procurement of Safety Critical Software in Defence
Equipment. 1989.

[91 J. Pedersen and M. Klein. Using the Vienna Development Method (VDM) to Formalize
a Communication Protocol. Technical Report CMU/SEI-88-TR-26: DTIC: ADA 234750.
Software Engineering Institute. November 1988.

[10' P. R. H. Place and IN. G. Wood. Formal Specification Methods in Practice. In preparation
for SEI Annual Technical Review.

[11j P. R. H. Place and W. G. Wood. Survey of Formal Specification Techniques for Reactive
Systems. In preparation as an SEI technical report, 1990.

[12 i A. Pnueli. Applications of Temporal Logic to the Specification and Verification of Reactive
Systems: A Survey of Current Trends. In Current Trends in Concurrency, pages 510-584.
Springer- Verlag. 1985.

[1-i D. Sannella. A Survey of Formal Software Development Methods. Technical Report ECS-
LFCS-88-56. Edinburzh University. July 1988.

[14] J.M. Spivey. The Z .Votation. Prentice.Hall. 1989.

[15] W. G. Wood. R. Pethia. L. Roberts Gold, and R. Firtn. A Guidn to the Assessment of
Software Development M.nthods. Technical Report CMU/SEI-88-TR-8: DTIC: ADA 197416.
Software Engineering Institute. April 1988.

[1,3] W. G. Wood. D. P. Wood. P. R. H. Place. and D. W. McKeehan. Avionics ivstem/Software
Requirements Specification. In Tenth Annual IEEE/AESS Dayton Chapter Symposium.
19C9. i

UNC LASS I FIED/IUNL IM I TED

NATO UNCLASS I F I ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 5. Date: 6. Total Pages:

15.04.91 19
7. Title (NU):

The "Spiral Model", some problems, many solutions?

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Edltor's:
Dick W. Fikkert

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
TNO Physics and Electronics Defence Research Section
Laboratory NATO Headquarters
P.O. Box 96864 B-1110 Brussels
2509 JG The Hague Belgium
The Netherlands (Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

SPIRAL MODEL, LIFE CYCLE MODELS, IT PROJECT MANAGEMENT, IT
DEVELOPMENT APPROACHES, PROCUREMENT, QUALITY MANAGEMENT, QUALITY
ASSURANCE, TECHNICAL DEVELOPMENT, EVOLUTIONARY PROCUREMENT,
PROTOTYPING

14. Abstract:
The author defends an alternative life cycle model called the

Spiral Model introduced In literature by Dr. B.W. Boehm. This model
is a generalization of other existing models and creates a risk-
driven approach for the development of software intensive systems.

The paper emphasizes on finding additional rationale in favour of
the Spiral Model. The author found some rationale by applying
literature results to the spiral model and some by analyzing current
approaches on problems that occurred when author applied and promoted
the use of the Spiral Model.

The paper states that system development is made up of 5 domains
(Life Cycle, Project Management, Procurement, Quality Management and
Quality Assurance, Technical Development). These domains'should be
made less dependant of each other, otherwise alternative approaches
like the Spiral Model or evolutionary procurement cannot be
introduced.

UNCLASSI F I ED/UNL IMI TED

A.6.1 AC/243(Panel 1I)TP/1

The "Spiral Model", some problems, many solutions?
Dick W. Fikkert!

TNO Physics and Electronics Laboratory

Table of Contents:

1. OVERVIEW, OBJECTIVES AND RECOMMENDATIONS 2

2. INTRODUCTION 4

2.1 What will be addressed technically? 4

2.2 The relationship with evolutionary procurement 5

2.3 Why a specific general life cycle model? 5

3. THE SPIRAL MODEL, A FIRST GLANCE 5

3.1 The complete chart 7

3.2 Another look 8

4. SOME PROBLEMS (OR SOLUTIONS?) 8
4.1 Not necessarily complete requirements 8

4.1.1 Frozen requirements. 9

4.1.2 Maintenance types and costs 9

4.1.1 System types and maintenance 10

4.1.4 The just.fication of inevitable change 11

4.1.5 Change is inevitable 11

4.2 Activities are performed in the wrong order 11
4.3 A short case 12

4.4 It isn't manageable, is it? 13

4.4.1 Project management in general 14

4.4.2 Why overrun? 16

4.4.3 The spiral model, any improvement? 16

5. THE SPIRAL MODEL, A SECOND CHANCE 17

5.1 Risks 17

6. DETAILED RECOMMENDAT:ONS 18

7. LIST OF REFERENCES 19

7NC Fnysics ana E.ectrorics Laboral:ry
F.:. Box 96064
25C9 :a Den Haaq. The Nether.nos
*e -3:-'C-3264 22
:F~~ertNccCnL I ID. U/ inter/eUT

UN C LA5SSI F IE 0/UN L IM ITE D

UNCLASSI FItDIUNLIMITED

AC/243(Panel 11)TP/1 A.6.2

1. OVERVIEW, OBJECTIVES AND RECOMMENDATIONS

Many are using an ASAP approach (Analyze, Specify and Produce; better known

as the waterfall model) to manage their acquisition process. Therefore

contractor's project managers have to use a similar approach to be able to

discuss their project plans with their customers. This in turn leaves

limited freedom to the development approach, which thus has to be based on

a waterfall type of approach also.

Because of the mentioned dependencies, it seems attractive to fit new

approaches like prototyping into the currently used life cycle [1. NATO-

Policy90]. However, that will not solve problems that are inherent to the

Life Cycle Model used. Furthermore it is plausible that not all types of

software based systems will benefit from applying the same approach.

It can be concluded that there is a need for a development approach that is

flexible enough to handle the development of quite different classes of

software based systems, yet is acceptable for approaches used in management

and acquisition.

:t is the view of the author that the Spiral Model [2. Boehm88] is a good

candidate for such an alternative approach. It is an objective of this

paper to explain and reason about aspects of the spiral model that are

(meant to be) different compared to other approaches. Experience gained by

author through promotion and (limited) use of that life cycle model, shows

that the procurement side and contractor's management will have at least 2

major questions about any cnanges in either development or procurement

approaches.

The first questicn is: "The spiral model sounds like a good idea and it

apparently solves some problems but how do I manage it?"

The second question addresses a chicken and egg problem but deserves proper

attention because of the consequences of replacing procurement and

development approaches. The question is: ": do know that the current

approach has some deficiencies but how do you know the suggested

alternative will work with real life projects? It may solve some problems

but it might introduce many others".

Both questions, at least to some extent, can be dealt with by starting to

use the suggested approaches on an individual experimental scale. But that

UNCLASS I F I ED UNL I MI TED

ml m mm m m mmmm

UNCLASSI FIEDIUNLIMITED

A.6.3 AC/243(Panel 11)TP/1

route will take a very long time indeed before new approaches will be
applied to the development of large software intensive systems.
This paper addresses these and other questions by analysing relevant
aspects of approaches. The analysis shows that some "problems" of the
spiral model are also present in the waterfall model. Yet the "problems"
are recognized in the spiral model only. Actually it will be shown that
these "topics" solve problems present in other models. It is fair to note
that the solution offered is not generally acceptable yet. It is the view
of the author that experimental use of the spiral model should be
encouraged just as the exchange of experience with its usage.

Because the Spiral Model includes incremental, evolutionary development it
can be a candidate for managing that type of development. Also it includes
the "why and when" topic as (dynamlic) risk management. One detailed
reconnendations in this paper is to investigate whether evolution can be
applied to the development approaches themselves to allow introduction of
the spiral model.

Replacing development and/or procurement approaches has consequences in
other areas. RSG.01 "on Distributed System Design Methodology" of AC/243
Panel.l1 introduced the notion of five domains2 that make up system
development. This paper recognizes a slightly evolved set of domains
addressing the Life Cycle, the Management of Projects, the Procurement, the
Quality Management and Assurance and the Technical Development. The
recognition of the domains does make sense if they are as independent as
possible.
Thus for example a quality standard [16. ISO900x] should be usable with the
waterfall model as well as the spiral model. The draft guide-line [4. ISO-
draft-N33] to ISO 9001 states explicitly that it is independent of a
development model.
Yet it is the-author's opinion that it should be investigated whether this
guide-line allows the application of the spiral model before the successor
to N33 becomes an international standard. Also it is likely worthwhile to
investigate whether the concept of "separation of concerns" (orthogonality
of domains) can be introduced in the implementation of the NIAG report "on
the Development and Implementation of Software Intensive C31 Systems". That
report addresses acquisition as well [5. NIAG88].

The mutual dependency of the distinguished domains currently limits the
application of alternate approaches. Therefore efforts should be directed
so that the domains of Procurement, the Life Cycle, Project Management,

Z Author :s a member of RSG.C that reconizod the domains of Development. Manaqement,
Documentation and Ouality Assurance. 13. RSGI93.

UNCLASSI FIED/UNLINI TEO

UNCLASSIF I EDIUNLIMI TED

AC/243(Panel 11)TP/1 A.6.4

Quality Management and Assurance, Technical Development, and relevant
standards and guide-lines could be made less dependent to ease the
introduction of alternative approaches.

2. INTRODUCTION

2.1 What will be addressed technically?

Technically this paper addresses the topics Life Cycle Models and Project
Management for the development of software based systems. A life cycle
model can be defined

3 as a structured, common view of compound activities that need to be
performed to complete the software development and maintenance. Different
life cycle models have been published and some are generalizations of a
number of others [2. Boehm88 and to some extent 6. McDerm-Ripk84] Note

that more detailed life cycle models may include the element "product" as
well.

Project Management generally includes a life cycle model implicitly. In
this paper the two are distinct and complementary. One task of project
management is the management of the activities that comprise the
(application of a) life cycle model. Software project management includes
many other aspects [7. Boehm-Ross89 and 8. Wideman89] like communication

with subcontractors, departments, procurement, sales and the end user,
motivation of team members, consensing, negotiating, coordinating and
socializing.

This paper narrows its view of Project Management to that part that is
concerned with the control of completion time, money, quality,
organization and information (9. Wij-Ren-Sto88]. The reason being that
especially that part is dependant on and limits the acceptance of

alternative life cycle models.

.!%Is o*f.t;on fts the obtctve of a software process model: to structure the development
pr:ress oy oeatrinq activities, products and relations (Koenlq). This defin .ton nowever
.nc.uaes the oaectlve as we,. as the Jeans.
Anotner description of the pr.-ary functions of a software process model is: to determine the
cror of the stages involved in. software development and evolut on and to establish transition
crteria for proqressing fror one staqe to the next (Boehm).

UNCLASS I FI ED/UNL IMI TED

..

UNCLASSI F I ED/UNLIMI TED

A.6.5 AC/243(Panel 11)TP/1

2.2 The relationship with evolutionary procurement

What is the relation of project management and life cycle models with

evolutionary procurement? Quite simply stated, even the promising
evolutionary procurement needs to be managed. As explained in a previous
section, it then also needs a Life Cycle Model that probably needs to be
a traditional one (see Introduction). Although not at all recommended in
this paper one could envisage that each evolution of a software product
that is being procured, itself be developed in a traditional way.
Another important relation to evolutionary procurement is the influence
of procurement methods on development focussed methods as explained in
the introduction. Replacing an approach somewhere in the chain will have
great impact on the whole chain.

2.3 Why a specific general life cycle model?

The apparent contradiction in this section's title is also the answer to
the question. The spiral model defended in this paper is a generalization
of many other life cycle models. When it is applied it could unwind into
an equivalent of the others. In practice it will unwind into an
appropriate mix of the other models. An evidence of its generality is
that people who address the spiral model often have almost contradictory
views on what it comprises. Indeed the application of the spiral model
can produce quite different life cycle activities depending on real
project conditions (risks) . Furthermore the model distinguishes process
and product oriented activities.

3. THE SPIRAL MODEL, A FIRST GLANCE

Experience shows that the introduction of the spiral model has not lead to
general acceptance, even though it was proposed by a celebrity like Dr.
Barry Boehm. Although Boehm's introductory paper on the spiral model
mentions some rationale for the model, people apparently believe that the
changes the model proposes, introduce problems which seem not to be present
in their current approaches. To explain these problems we have to
investigate the spiral model in some detail.

UNCLASSI FI ED/UNL IMI TED

U N CL A SSI FI E DUNL IM I TE D

AC/243(Panel II)TP/1 A.6.6

0~0
0 9L0

4-0 0.

1 0.

-00

C.)o

0~ C

0.. .6. C6I *S00r 0-OO'C)0 CLo

Fiqure . SpirL mdlo h otaepoes
Co - 3: E~o fD.BryW oh.

UNCLASSIFI ED/UNLIMITED

A.6.7 AC/243(Panel I)TP/1

3.1 The complete chart

Figure 1 is a chart of the spiral model. Although a picture is worth a
thousand words, people usually need a few words of explanation with this
one. Within the working group on Software Engineering of the Netherlands
Society on Informatics we studied the original introductory paper (14.

Boehm86] on the spiral model and still have some questions. One of our
questions was "why is the spiral stretched out to the right?" This
particular question was answered in an updated version of the paper
published in IEEE computer (2. Boehm88]. It appears to be artistic
license. If you try to draw the chart you will discover that either the
letters are unreadable or the chart does not fit on the paper.

In a way the chart is the right one for a first glance because you will
never forget it any more. For a first explanation I will ignore some
elements. To explain the spiral model in words it is best to quote the
IEEE version of Boehm's introductory paper:

"The model reflects the underlying concept that
each cycle involves a progression that

addresses the same sequence of steps,
for each portion of the product and

for each of its levels of elaboration,
from an overall concept of operation document

down to coding of each individual program
4"

Note that this description does not imply any ordering of for example
successive portions and levels. The steps of each cycle are:
1. Determine objectives, alternative solutions and constraints.
2. Evaluate alternatives. Identify and resolve risks.
3. Develop, verify next-level product. (next-level is relative to the

last completed cycle)

4. Plan next phase 5 .

That's all that's needed to start thinking about the model and to relate
it to some problems of traditional life cycle models and project

management.

4 Not* tnat som art;st3c licence has been tamer wiLt the layout of this compound sentence.
:I's worthwnile to note that the first three steps ate product oriented and risk driven. The
last step is process oriented. If a risk driven approach is 6 necesslty for the product steps,
why shouldntt be applied to the process as well? This idea has been introduced in 110. Boehm-

UNCLASSIFI ED I UNLIMITED

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TP/1 A.6.8

3.2 Another look

Another way of introducing the spiral model is to list some remarkable
aspects of its application. In the next sections it will be apparent that
its application:

- does not necessarily specify all requirements up front,
- does not necessarily execute activities in the same order compared
to traditional approaches,

- does not necessarily specify all activities up front,
- does not necessarily at any point in time lead to a representation

of the system at the same level of elaboration.

The words "not necessarily" should be understood as: whether it will or
will not happen is determined during the execution of the project. The
determination itself is based on risks that are determined during the
project execution. More dynamic behaviour is hardly comprehensible!

Gone seems any basis for that part of project management that is
concerned with the control of completion time, money, quality, organiza
tion and information. Let us investigate this questionable behaviour of

the model.

4. SOME PROBLEMS (OR SOLUT:ONS?)

All problems presented in this section have been encountered during the use
and promotion of the spiral model by the author. However, some topics are

of course covered in Boehm's introductory paper. The section on management
and the short case are original. For all problems discussed, emphasis is
directed to find additional rationale for the spiral model by applying
results from literature to the spiral model. Also the results of the
fruitful discussions in the working group "on Software Engineering"6 . have
been used for further rationale.

4.1 Not necessarily complete requirements

It is often stated that a moving target is bad for controlling
development. Whom could say a similar thing? It could be argued that
moving targets are bad for shooting!

6 This workinq qroup of the Netherlanas Society on Informatics has stuaiea the spiral model. The
res.its have beei presenteo by 3 womaers wnor : Defenoed the waterfa. mee;. 21 Analysea t's
;ifa.s &no 31 :n:roauced the spira. poae.

UNCLASS I F I ED /UNL IMI TED

UNCLASSI FI ED/UNLIMITED

A.6.9 AC/243(Panel 11)TP/1

The application of the spiral model tends to not specify all details of

all requirements up front. Since a full requirements document normally is

one of the first milestones, control over the requirements phase and the
final product seem to be lost.

It is the objective of this section to show that moving targets are
sometimes, for certain classes of systems, inevitable. Software

development and management should be able to cope with that fact7 . The
spiral model does not necessarily develop all requirements in full

detail. That is a strong argument in favour of of that model, not a

weakness.

4.1.1 Frozen requirements.

During a quality assurance seminar it was mentioned that "Working

with a requirements document is like walking over water. It's easier
when it's frozen." Yet not many people will realize that the water
need not be completely frozen. For some, ice floes are enough. What

is needed is a certain amount of frozen water. Furthermore the
mechanism is frozen water, the objective is walking!

If you heard the above saying for the first time you may have
appreciated it. More important however is whether there are some

fundamental reasons why requirements often keep changing other then

"the user does not know what he wants". The reason that requirements

sometimes keep changing can be clarified if we study "software

maintenance"

4.1.2 Maintenance types and costs

At least two types of maintenance can be distinguished.

- Corrective maintenance includes repair of hidden flaws of a new

building and repair of a manufacturing fault in the steering

column of a new car model.

- Adaptive maintenance includes restoring two rooms into one and
mid life upgrades of equipment.

Not many, except IT-people, will call these activities maintenance.
Yet that is what software maintenance is. Other types of non-IT

Annex C loefinition of Evolutionary &cqusitioni to [5. NZAGII) starts with *Evolutionary
acqulsitien as an acquisition strategy which may be used to procure, system expected to evolve
curing d elJopmnt ...

UNCLASSIFIED/UNLIMITED
prO

SUNCLASS I F I ED /UNL I MI TED

AC/243(Panel 10)TP/1 A.6.10

maintenance all have to do with wear and prevention of wear.

Software does not suffer from wear (11. Lehman80]

It is generally accepted that:

- The ratio of the costs of software development over maintenance

is 50/50 up to 30/70,
- 30% to 50% of the life cycle costs of software is spent on

adaptive maintenance.

Having described some remarkable aspects of software maintenance,
let us try to find an explanation for these phenomenons.

4.1.3 System types and maintenance

In 1980 Lehman distinguished three classes of software programs [11.

Lehman80]. For each class the program's evolution (change in

requirements) can be predicted. In practice systems are a mixture of
the classes8 .
The second Lehman class is the easiest one to understand. That one
includes systems which depend on for example laws, social security
rules and strategies. Even if it was formally proven that the

original software met the requirements, it has to be "maintained" as
soon as the rules change. One could say that the requirements for

systems belonging to this class are time dependent.
The third class consists of programs which are going to become part
of the real world that these programs are trying to automate or
support. These systems are almost impossible to specify completely.
Large parts of C3I-systems belong to third class. One could say that

the requirements for systems belonging to this class depend on the
system itself. In a sense these requirements are also time dependent
because experimentation and real use will reveal new requirements.
The second and third type of systems are often characterized by
saying that "the user does not know what he wants".

8 Lehman Suggests to Identify parts of a large program. that comply to his first class (S-class),
curinq the partitioninq process. Those system parts then can be implemented according to
specifications tnat w... rot c"anq* (typical for S-class programs). Which parts can be handled
that way is of course only Known after the partitioning process. Not all work in a detail can
o predicted up front, The spira: moae also recognizes that fact.

U N C LUN S S I F I E DIU NL I M I TE D

UNCLASSIFIED/UNLIMITED

A.6.11 AC/243(Panel 11)TP/1

4.1.4 The justification of inevitable change

It is a matter of simple extrapolation to understand that
requirements will change during (especially long) developments too.
Some requirements of a certain class of systems are time dependent.
Would the world stop turning around during a long development cycle?

4.1.5 Change is inevitable

As explained in the previous sections, changing requirements are
inevitable for certain conuonly encountered classes of systems. It
is useless to specify full details of requirements that will change
during the development. The spiral model does not necessarily freeze
or determine all requirements up front. By now it must be clear that
it is a strong argument in favour of that model, it is not a

weakness. How exactly the spiral model handles changing requirements
is outside the scope of this paper 9 .

As mentioned under "Maintenance types and costs", at least 50% of

the "maintenance phase" are development activities. The spiral model

recognizes this, names it software enhancements and incorporates

these as a normal development cycle-.

4.2 Activities are performed in the wrong order

When the abstract of this paper was prepared 1 had not written the paper,

neither did I know the allocated time. After acceptance I heard that I

could speak for 30 minutes on the tutorial day. Would I have known that

in advance, my abstract would not cover "a second part of this paper" and
probably would be more tutorial oriented.

Have things been done in the wrong order? That may be the wrong question.
The point is that it is not reasonable to ask for the requirements

"allocated time" and "session type" up front if you take the symposium
organizer's job into account.

9 Basically the strategy to handle changing req-Jirements wil be determined dependinq on the risk
involved to develop parts of the requireonts. The vtrateqy could lead to dev*lop a prototype"
or *deveop evolutionary". but other strategies like a combination of the two are possible too.
The spiral approach has the advantaqe that trade offs between alternative dvelopments and
traditional maintenance have to be made in step 1 and 2. 1f the money for enhancements and
oriqina development is supplied by almost Independent sources 15. NIAUi]. that problem has to
be solved too.

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TP/1 A.6.12

The application of the spiral model tends to rearrange the order of

activities compared to traditional approaches. It is possible that some

design has started before all requirements are known. This could be (but

should not!) interpreted as "we are back in the old days: code first and

may be other activities will follow afterwards".

It feels right to develop all requirements of a system up front. However,

if for example a COTS (Commercial off the Shelf) software package could

be a real alternative in a particular situation, it is much better to do

some evaluation of the commercial product right up front.

Boehm's introductory paper on the spiral model has an excellent

introduction on "stage ordering problems" 1 . Its description of

difficulties with evolutionary development are of particular interest to

this conference. For example evolutions of a product may be very hard to

accomplish if long range architectural and usage considerations have not

been addressed or are hard to determine.

4.3 A short case

During the contract negotiations of an advanced tool for an experimental

Progranming Support Environment, two techniques to be supported by the

tool were identified that were major risk items. While trying to minimize

the risk at that stage, it was recognized that these techniques were not

essential for the objective of the experimental PSE (it was the tool user

that would benefit).

The support for the two techniques was offered as optional item (within

the fixed time and budget constraints) . This however was not acceptable

because a specifications baseline should describe the tool exactly.

Optional items could not be managed.

In this case the spiral model did identify and could resolve a major risk

for the project. It would tend to use evolutionary development for the

two techniques. Although in this case the specifications could be

determined, the question was whether they could be implemented. This is

clearly a case in which a lump sum contract is not the right approach1 2.

boenm$s I it covers the code-ana-fx model. tne staqewise and waterfall models, the
evo.utionary development mooe. &no the transform model.
Ar t:erestinq table listinq naroware contract approaches, advantaqes, requirements and problems
.s presented in 112. Grifflths89). For lump sum contracts the followinq problem is described:
*T: the extent that requirements are nct fi uy defined or when they are subject to variation,
tne employer puts the contractor at risk and thus, probably himself".

UNCLASSI F I ED/UNLI MITED

UNCLASSI FI ED/UNLIMI TED

A.6.13 AC/243(Panel 11)TP/1

In the spiral approach the development of support for the two techniques
would be "dormant" until knowledge about them would become a major risk
for the rest of the project. Then some elaboration would be needed.
This is an example of the fact that system representations (design,
detailed design, code etc.) need not be at the same level of elaboration
across the whole system. It also is an example that evolutions sometimes
have to be designed "a little". The development of future evolutions can
not always totally be postponed until the next evolutionary version of a
system.

4.4 It isn't manageable, is it?

In project management it is important that that activities are planned,
con nitted to, executed and reviewed. That certainly holds when applying
the spiral model. It is the intention of this section to reassess the
type of control traditional pro)ect management techniques offer and show
that the spiral model can improve control. However, the list of some
remarkable aspects of the spiral model displayed in the section "another
look" must worry some readers.
(Application of the model:

- does not necessarily specify all requirements up front,
- does not necessarily execute activities in the same, order compared

to traditional approaches
- does not necessarily specify all activities up front,
- does not necessarily at any point in time lead to a representation

of the system at the same level of elaboration.)

The author is convinced that currently the question of the management
issue can only be dealt with through reasoning. Every time a question on
the management of the spiral model is raised (to put it mildly), I have
asked myself "how do we handle that problem currently?" It appears that
some of us have forgotten what exactly project management techniques can
control.

If project management (implicitlyi defines a life cycle then the spiral
model can not be managed because it has its own life cycle model. If the
approach in project management must be the same as in other disciplines
I8. WidemanS91 then the spiral model violates some of the fundamentals of
project management.
Still in development of software based systems others agree that "changes
(to the acquisition procedures) must be made.to improve the Chances of

r c v F f I U N L I M I T ED

UNCLASS I F I ED/UNL I M I TED

AC/243(Panel 11)TP/1 A.6.14

success" [5. NIAG88] (in the author's view despite of project management

techniques). So let us assume a change by separating the life cycle model
from project management approaches. That is the first step to be able to

use the spiral niodel.

Remember that the spiral model incorporates other models and can unfold

as for example a waterfall model. If it is known that a particular

project could well be tackled by a waterfall approach, it would be a good

idea to start the project with a waterfall approach. Then right after the

development of the full plan, a switch to the spiral model could not harm

at all, because the risks identified would drive the spiral model into a

waterfall model!

This seems an attractive way to experiment with the spiral model,

especially if it appears that the waterfall is not that suited for the

project.

4.4.1 Project management in general

Two important concepts to control projects are the control cycle and

control elements. The corntrol cycle consists of the steps execute,

monitor, comparefforecast and adjust. The aspects of a project which

can be controlled are the control elements completion time, money,

quality, information and organization.

To be able to execute the control cycle it is necessary to have an
actual state and a plan for each of the control elements. The step

compare&forecast checks the actual situation with the planned one.

The comparison can lead to an adjustment in the plans within the

margins the plans contain for each of the control factors.

Just for reasoning , it will be assumed in the remaining of this

section that the elements time, quality, information and

organization are not adjustable. Money is the only element that can

be adjusted. In other words: control over the project is possible

only by spending more or less money.

UNCLASS IF I ED / UNLIMITED

UNCLASSIFIED/UNLIMITED

A.6.15 AC/243(Panel 11)TP/1

(begin of assumption)

The assumption seems totally unreal. However, it is relevant and

useful because:

- The assumption will clarify what exactly can be controlled in a

project.

- The assumption is a reality as soon as the margins of the other

controlling elements are exhausted.

- The assumption will clarify why margins in control elements can

be exhausted

As long as the plan proves to be right the control cycle will no:

cause any adjustment. It must be obvious that the more advanced and

unique the project is, the less accurate the estimates (the plan)

can be. The control cycle however will perform its task because it
uses the margins which ought to be present in any plan. The actual

control of the project exists of the step adjust: it consumes the

margin in the budget.

Note that the quantity of work to complete the project, given a

certain approach is a constantl3, which is unknuwn at the start of

the project.

if the margin contained in the plan is exhausted, the project is out

of control in terms of project management. The step adjust is

replaced by a step re-plan (a new cost estimate, negotiations etc.).

This alternative step establishes feedback to the plan and corrects

errors apparently present in the previous plan. The step re-plan

should be an exception.

(end of assumption)

To summarize project control:

a) Project control consists in consuming the margins which ought

to be present in the plan for each of the five control elements

(completion time, money, quality, organization and

information).

b) A project can not be controlled any more by project management

techniques if the margins are exhausted. Someone has to
"replenish stocks"

wouLa o nice if an estimate coiia inf.uene* for example the finai quantity of worx. In
rea t:y it may seem true however. -cs: ccepiex projects costs siqnificantly more than the
criqina. estimate.

UNCLASSIFIED/UNL IMI TED

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TP/1 A.6.16

4.4.2 Why overrun?

Despite the application of project management techniques, complex

projects overrun 14. As explained in the previous section, control is
only possible if a plan contains margins. Thus overrun is caused by

insufficient margins.
Why does a plan contain these "errors". Many times, especially in

smaller projects, there is no margin at all. As a consequence the

step re-plan is a normal step in stead of an exception.

If margins were present and appeared to be to small, it is
interesting to know how the margins were determined. Often it is an
educated guess, supported by techniques and tools to calculate some
"realistic" mean value for the project. On top of that commercial

feasibility will adjust the estimates.

As already stated project control in not possible without margins.

This implies that the control part of project management simply

costs money. The customer pays if it is to large, the contractor

pays if the margin is to small. An optimum can be realized if a re-
plan step is considered to be normal. Effectively it then becomes a

cost plus situation.

Note that the quantity of the work to execute the project, is
independent of the final amount of margin left (positive or

negative). It therefore seems beneficial to both the customer and

the contractor to include the step re-plan in the normal project

control cycle.

4.4.3 The spiral model, any improvement?

This spiral model has a plan-step as the last step of every cycle.

The resulting plan and other results of the current cycle are the
basis for review and commitmert of all parties concerned. False
expectations about the accuracy of the original plan are being

anticipated because it is accepted that the step re-plan is normal,

not exceptional.

The spiral model can not be a solution for the overrun of projects.

In this model however, re-planning correctly will not be experienced

as overrun. Overrun is inherent to the fact that its comparison base

:4Same lterestinq cos: overruns as v.l: as qrowinq pre-pro3ect estimaLtes (and some remedies) from
Otne: disciplines are liste ;n ':2. GcrffithsS91.

UNCLASS I F I EDIUNL IMI TED

UNCLASSI F I ED UNL IMI TED

A.6.17 AC/243(Panel 11)TP/1

is an estimation1 5 . Even rough numbers are difficult to determine

for unique complex projects.
It is often said that costs are not known in advance when applying

the spiral model. That of course also holds for traditional

approaches if the project plans had to be redone or the results of

the project were not usable.
If accepted as an estimate, the result of any estimation method can

be used with any approach, also with the spiral model. This model

however seems to do a better job to control re-planning.

Is that all? Not really, but first we have to phrase the objective
of project control: project performance. The spiral model is a real

candidate to improve project performance.
It was already stated that the total amount of work to complete a

project, given a certain approach, is a constant that is not known

in advance. It is very likely that project performance could be
improved by reordering the activities. That is what evolutionary and

prototype approaches essentially are doing.

The spiral model uses risks determined during the execution of the

project as a driving force to determine the order of activities.
Therefore it probably will do a much better job to optimize the

order of activities compared to any "upfront ordering" of other

approaches.

5. THE SPIRAL MODEL, A SECOND CHANCE

5.1 Risks

Risk has not been addressed properly'6 in this paper so far. The spiral

model addresses risks in two ways. First risks are identified through
looking at alternative solutions. That is an approach that could be used

in project management in general.
The spiral model uses risks resolution as the driving force to undertake

activities. This has some non-trivial consequences. For example if a

specific part of a design is a high risk item, that part should be

.5 Estimate: to determine rouqhly tne size. extert or nature of (Webster!.
6 Boehm states that *The meaor istl nquishinq feature of the spiral model is 'at it creates a

risk-drJen approach to the software process rather than a primar-ly documer., -driven or code-

orive*n process.*

UNCLASSI FIED/UNLIMITED

UNCLASSI FI ED/UNLIMITED

AC/243(Panel l1)TP/1 A.6.18

developed in much more detail then for example trivial parts (provided
the high risk part is essential for the current release of the system).

It should be noted that risk analysis is to some extent already quite
common. Using the risk analysis to determine the sequence of the tasks to
undertake as well as the amount of elaboration within a task, is less
common. Another difference is that the spiral model continuously assesses
risks while other risk analysis approaches tend view risk as a static
item. Often the risk analysis is done in the beginning to determine the
price of the contract.

6. DETAILED RECOMMENDATIONS

This section also lists the general reconnendations of the section

"Introduction, objectives and reconnendations".

- 12. Boehm88] "Even if an organization is not fully ready to adopt the
entire spiral approach, there is one characteristic spiral model
technique which can easily be adapted to any life cycle model, and
which can provide many of the benefits of the spiral approach. This is

the Risk Management : 7 Plan ... "

- Experimental use of the spiral model and exchange of experience with
its usage should be encouraged.

- The spiral model should be considered as a candidate life cycle model
for evolutionary approaches.

- Effort should be directed to apply the evolutionary approach to the
development approaches themselves to allow introduction of the spiral
model in the cause of a project. it is of major help to answer
questions about topics of the spiral model by analysing how and
whether the current approaches address the questions.

- The domains of Procurement, the Life Cycle, Project Management,
Quality Management and Assurance, Technical Development, and their
relevant standards and quide-lines should be made more orthogonal to
ease the introduction of alternative approaches.

- It is likely worthwhile to investigate whether "separation of
concerns" (orthogonal domains) can be introduced in the implementation
of the NIAG report "on the Development and Implementation of Software
Intensive C31 Systems".

17 RisK manaqaemnt %a probably (.ot yet read by author) also a main topic of 113. Risk89).

UNCLASSIF I ED/UNLIMITED

UNCLASSIFIED/UNL IMI TED

A.6.19 AC/243(Panel 11)TP/1

7. LIST OF REFERENCES

1. [NATO-Policy90] NATO policy guidance for the utilisation of simulation,
prototyping, and testing in the development and acquisition of complex
software based systems, AC/317 (WG/2)WP/55(Revised). NATO, Brussels,
February 1990.

2. (Boehm88] Barry W. Boehm, A Spiral Model of Software Development and
Enhancement. IEEE Computer May 1988, page 61-72

3. [RSG89] Final Report on Integrated Project Support Environments,

AC/243(Panel 1l/RSG.1)D/4. December 1989.
4. [ISO-draft-N33] Quality Systems- Guidelines for Quality Assurance

(DRAFT). N33,ISO/TC176/SC2/WG5, February 1989.
5. [NIAG88] Report on the Development and Implementation of Software

Intensive C31 Systems, NIAG-D(88)17. NATO Brussels, June 1988
6. [McDerm-Ripk84) John McDermid and Knut Ripken, Life cycle support in the

Ada environment. Cambridge University Press, ISBN 0 521 26042 6, 1984
7. [Boehm-Ross89) Barry W. Boehm and Rony Ross,Theory-W Software Project

Management: Principles and Examples. IEEE Transactions on Software
Engineering, vol 15, July 1989, page 902-916

8. [Wideman89] R. Max Wideman, Successful project control and execution
(Keynote paper INTERNET 88). International Journal of Project

Management,Vol 7 No 2 May 1989, page 109-113
9. [Wij-Ren-Sto88] Projectmatig werken. Gert Wijnen, Wilem Renes en Peter

Storm, Marka Paperback, Het Spectrwn by, Utrecht 1988, ISBN 90 274 1923 X

(in Netherlands)
10. [Boehm-Bels]Barry Boehm and Frank Bels, Applying Process Programming to

the Spiral Model, probably SIGSOFT Software Engineering Notes 1989?
11. [Lehman8O] Meir M. Lehman, Programs. Life Cycles, and Laws of Software

Evolution. Proceedings of the IEEE, vol 68, no. 9, September 1980.
12. [Griffiths89] Frank Griffiths, Project contract strategy for 1992 and

beyond. International Journal of Project Management, Vol 7 No 2 May 1989,
page 69-83

13. [Risk89] Barry W. Boehm, IEEE Tutorial Volume on Software Risk
Management, Catalogue Number EH291-5, 1989

14. [Boehm86) Barry W. Boehm, A Spiral Model of Software Development and
Enhancement. (ref 2. is an updated version). ACM SIGSOFT Software
Engineering Notes, vol 11 no.4 August 1986, page 14-24

UNCLASS I F I ED /UNL I M I TED

NATO UNCLASSI FI ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/I1 5. Date: 6. Total Pages:

15.04.91 10
7. Title (NU):

Automating the Development of Software

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
Douglas R. Smith

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
Kestrel Institute Defence Research Section

3260 HilIview Avenue NATO Headquarters
Palo Alto B-1110 Brussels
California CA 94304 Belgium
United States (Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

PROGRAMMING METHODOLOGY, FORMAL METHODS, AUTOMATED PROGRAMMING,
REUSE, PROTOTYPING, EVOLUTION, ALGORITHM DESIGN, KNOWLEDGE-BASED
TOOLS

14. Abstract:

This paper describes our work on automating the development of
computer software. A model of the structure, design, and evolution
of software systems is described. This model underlies KIDS (Kestrel
Interactive Development System) which is used to interactively
develop formal high-level specifications into correct and efficient
programs. We also describe an extension of the model to handle the
evolution of software systems.

NATO UNCLASS I F I ED

UNCLASS I F I ED/ UNL I MI TED

B.1.1 AC/243(Panel 11)TP/1

AUTOMATING THE DEVELOPMENT OF SOFTWARE

Douglas R. Smith"

Contents

1 INTRODUCTION 2

2 MODEL OF SOFTWARE DESIGN 2

2.1 Dom ain M odel 3

2.2 Specifications . 4

2.3 Derivation Structures 4

3 KIDS 5

4 EVOLUTION STRUCTURES 7

5 CONCLUDING REMARKS 8

REFERENCES 9

* Computer Scientist. Kestrel Institute. 3260 Hillview Avenue. Palo Alto. California 94304 USA

UNCLASSIFIED/UNL IMITED

UNCLASSI F I ED/UNL IMI TED

AC/243(Panel 11)TP/1 B.1.2

1 INTRODUCTION

This paper describes our work on automating the development of computer software.
This work involves elaborating a model of the structure, design, and evolution of software
systems. We believe that the following are essential characteristics of the next generation
of software develdpment tools.

* Formal specifications - to capture in a precise and implementation-independent
notation the desired behavior of software;

e Semantics-preserving transformations - to base development and evolutionary ac-
tivities on transformations that preserve some specified semantics:

* Formal design - to allow machine support for the design process: especially to
allow the application of representations of general programming knowledge. domain-
specific programming knowledge, and the capture and reuse of design decisions:

* Scalability - to uniformly model design and evolution processes at the program.
module, and system levels:

* Evolution - to accomodate change as an integral part of design.

A key idea is that it is easier to understand, explain, build, and modify a complex
object in increments rather than all at once. We describe our model of design (Section 2)
and the KIDS system which embodies it (Section 3). In Section 4 we describe its extension
to a model of software evolution. We conclude with a discussion of various features of the

model and its possibilities for practical application.

2 MODEL OF SOFTWARE DESIGN

The diagram in Figure I presents the components and relationships of a simplified
model of software design. The domain model is a formal representation of relevant as-
pects of the world within which the desired software is to be embedded. The specification
component expresses constraints on the behavior of the desired software artifact. The
derivation stractare component is a record of the design decisions that connect the speci-
fications to target code. Our model of design is a transformational one - the specifications
are incrementally transformed in a stepwise refinement process into executable code that
is provably consistent with the initial specifications. The final component. code, is a
program specification expressed in a compilable programming language.

UNCLASS I F I ED/UNL I MI TED

UNCLASSIFIED/UNLIMI TED

B.1.3 AC/243(Panel 11)TPIl

Dorivation

structure

SSpecifications

Figure 1: Design Structure

The data structure that comprises the four components in Figure 1 is called a design
structure. The key constraint on a design structure is mathematical consistency between
the components. That is. the specification is stated in terms of the underlying domain
model and is consistent with its constraints. The derivation structure is a proof of con-
sistencv between the specification and code. The only assumptions used in deriving the
code are those that are available in the model or in the specification itself.

2.1 Domain Model

If we want to specify and build a software system, then we need vocabulary and some
expression of its semantics. Domain models express the objects. operations. relationships.
agents. activities, and other assumptions and properties about the application domain. It
is important to explicitly represent this information because (i) it is useful in achieving a
common understanding among the developers of a system. (ii) it provides the vocabulary
in which the requirements of the desired system are expressed, and (iii) the derivation of
code from specifications is inference within the theory described by the domain model.

Domain models can be clai&fied into two kinds: static and dynamic 181. Static models
are used in application domains that are essentially timeless. A database provides one
example of a static model. It expresses the objects and relationships of a finite world.
Static models are most generally expressed as theories in classical logic. Dynamic models
on the other hand are used when the objects and relationships can change over time.
They can be expressed by theories in temporal/reibdal l9gics or process models such as
state transition diagrams 17].

UNCLASSIFIED/UNL IMITED

UNCLASSI FI ED/UNL I MI TED

AC/243(Panel 11)TP/1 8.1.4

2.2 Specifications

Specifications describe the intended behavior of a software system. They are expressed
in terms of the vocabulary provided by the domain model. Specifications consist of formal
interface descriptions (services provided and required input) plus constraints on allowable
behavior of the desired software and the use of the system in context. The notion of a
specification can be factored into functional, structural, performance, and environmental
constraints:

e Functionality deals with the logical relations between inputs and outputs; that is,
the interface with the rest of the software system's environment. Ideally the func-
tional description is devoid of any structural constraints (implementation details).
Functionality constraints describe what the system is intended to do.

e Structural constraints deal with the form of the software system: that is. how the
system achieves its functional behavior. Structural constraints may describe the
modules and abstract interfaces of a system. specify the use of routines from a
standard library (rather than synthesizing similar code), specify the use of a certain
communication protocol, etc. A LISP or ADA program can be thought of as a
purely structural specification of a svstem.

* Performance deals with the resource utilization of a concrete program. Typical
performance issues are program termination (finite consumption of resources), the
amount of running time and/or memory space consumed. number of processors
used. communication costs. etc. A specification might state that the target program
should optimize a given cost function involving various aspects of performance.

* Environmental constraints describe the context in which the system will be used.
Assumptions might describe the sizes of typical inputs, a probability measure on
inputs, the relative frequency of calls on the system's utilities, number of processors
available and their characteristics. etc. This information is essential in assessing
whether the target code achieves its performance constraints. Environmental con-
straints import information from the domain model into the specification.

2.3 Derivation Structures

Derivation structures record the design decisions that connect specifications to code.
Specifications are refined incrementally via the application of transformation rules into
executable code that is provably consistent with the initial specifications [2. 3]. The
derivation structure can be used for documenting and explaining the design and for helping
to guide the design process.

UNCLASSI F I E D UNL I MI TED

! UNCLASSIFIED/UNLIMITED

8.1.5 AC/243(Panel I1)TP/1

One goal of our current work is to develop an abstract data type (ADT) of derivations
and to validate its generality by applying it to a diversity of known implementation steps
and design processes. A derivation ADT will have mechanisms for sequential and paral-
lel composition, alternation, and iteration of development steps [141. For our purposes,
mechanisms for abstraction, application, and exception-handling will be vital to capturing
general design processes found in KIDS [10, 11, 12]. The idea is that ground derivations
can express design histories - a trace of the decisions made (by man or machine) during a
derivation, and that parameterized derivations express design tactics - reusable methods
for deriving code from specifications. An ADT for derivations would have many of the
characteristics of a metalanguage, such as ML [6], since a derivation can be viewed as a
metaprogram applied to a specification to derive code.

3 KIDS

KIDS (Kestrel Interactive Development System) [13] is an experimental knowledge-
based software development system that integrates a number of sources of programming
knowledge. It is used to interactively develop formal high-level specifications into correct
and efficient programs. Tools for performing algorithm design, deductive inference, pro-
gram simplification, finite differencing optimizations. partial evaluation, data structure
refinement, conventional compilation. and others are available to the program developer.
The KIDS tools have the characteristics of

1. being fully automatic (except the algorithm design tactics which require some in-

teraction at present).

2. performing a well-defined and large grain-size development step. and

3. being correctness-preserving.

KIDS should be viewed as a front-end to a conventional compiler. It serves to raise the
conceptual level from which the user can obtain efficient code by applying automated
tools. Since any subset of the tools can be applied to a particular problem, the use of
KIDS blends seamlessly into current programming methodologies. KIDS is unique among
systems of its kind for having been used to design. optimize. and refine dozens of programs.
We believe that KIDS could be developed to the point that it becomes economical to use
for routine programming.

A user of KIDS develops a formal specification into a program by interactively ap-
plying a sequence of high-level transformations. During development, the user views a
partially implemented specification annotated with input assumptions. invariants, and
output conditions. A mouse is used to select a transformation from a command menu

UNCLASSI F IED/UNLIMITED

UNCLASS I F I ED 'UNLIMI TED

AC/243(Panel 11)TP/1 B.1.6

and to apply it to a subexpression of the specification (via mouse-sensitive syntax). From
the user's point of view the system allows the user to make high-level design decisions
like, "design a divide-and-conquer algorithm for that specification" or '"simplify that ex-
pression in context". We hope that decisions at this level will be both intuitive to the
user and be high-level enough that useful programs can be derived within a reasonable
number of steps.

Currently, KIDS runs on Symbolics, SUN-4, and SPARC workstations. It is built
on top of REFINE ', a commercial knowledge-based programming environment [1]. The
REFINE environment provides

" an object-attribute-style database that is used to represent software-related objects

via annotated abstract syntax trees:

" grammar-based parser/unparsers that translate between text and abstract syntax:

" a very-high-level language (also called REFINE) and compiler. The language sup-
ports first-order logic, set-theoretic data types and operations, and transformation
and pattern constructs that support the creation of rules. The compiler generates
CommonLisp code (prototype variants of the compiler can also produce C and ADA
code).

The KIDS system is almost entirely written in REFINE and all of its operations work
on the annotated abstract syntax tree representation of specifications in the REFINE
database. A key feature of the unparsers/pretty-printers is the option for mouse-sensitive
syntax - the pretty printer sets up active regions on the screen so that by moving the
mouse around, the system can compute the nearest subexpression in the text and highlight
it.

The user typically goes through the following steps in using KIDS for program devel-
opment.

I. Develop a domain theory - The user builds up a domain theory by defining appro-
priate types and functions. KIDS has a theory development subsystem that supports
the automated derivation of distributive laws for given functions. (A simple exam-
ple is the distribution of addition over multiplication in arithmetic). The user may
also supply other laws that allow high-level reasoning about the defined functions.
Our experience has been that distributive and monotonicity laws provide most of
the laws that are needed to support design and optimization.

2. Create a specification - The user enters a specification stated in terms of the under-

lying domain theory.

:REFINE is a trademark of Reasoning Systems. Inc., Palo Alto. California.

UNCLASS I F I ED /UNL IMI TED

L ,a m

UNCLASSI FI ED/UNLIMITED

8.1.7 AC/243(Panel 11)TP/1

3. Apply an algorithm design tactic - The user selects an algorithm design tactic from
a menu and applies it to a specification. Currently KIDS has tactics for simple prob-
lem reduction 110], divide-and-conquer [10], global search [12], and local search [9].

4. Apply optimizations - The KIDS system allows the application of optimization tech-
niques such as simplification, partial evaluation, finite differencing, and other trans-
formations. Each of the optimization methods are fully automatic and, with the
exception of context-dependent simplification (which is arbitrarily hard), take only
a few seconds.

5. Apply data type refinements - The user can select implement .:-is for the high-
level data types in the program. Data type refinement rules carry out the details of
constructing the implementation.

6. Compile - The resulting code is translated by a conventional compiler. In a sense,
KIDS can be regarded as a front-end to a compiler.

The user is free to apply any subset of the KIDS operations in any order - the above
sequence is typical of our experiments in algorithm design.

KIDS will likely be useful in the near-range as an algorithm designer's workbench.
It currently works best in application domains which are well-understood and whose
foundation is readily formalized. Applications areas have included scheduling, combina-
torial design, sorting and searching. computational geometry. pattern matching, routing
for VLSI. and linear programming. We have been developing a number of tools, such
as system-wide constraint maintenance, that could help with larger-scale programming
tasks. A medium-term goal at Kestrel Institute is to apply KIDS to its own development.

4 EVOLUTION STRUCTURES

Software typically evolves over time - programmers must continually adapt it to
meet changing needs and changing environments. Thus a successful model of design must
accomodate change and evolution as an integral part of the design process.

The notion of a design structure in Figure I provides the framework for thinking about
the evolutionary process. Initially the designer creates a simple. but consistent design.
Then the designer iteratively begins transforming the design structure until a satisfactory
design state is reached. These transformations are accomplished by making small but
meaningful changes to either the domain model (to improve its accuracy and precision),
to the specifications (to more accurately reflect the desired behavior), or to the derivation
structure (to make better implementation choices). These changes are then propagated
throughout the design structure in order to reestablish consistency. So, for example. if

UNCLASSI FI ED/UNL IMI TED

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TP/1 B.1.8

we add an exceptional case to the domain model, the design system should propagate
the exception into the specifications and finally through the derivation structure to be
reflected in the target code. Note the shift away from the current notion of "replay" of a
derivation structure on a modified specification (a kind of design-by-analogy) to the more
deductive notion of propagating changes through a structure and reestablishing consis-
tency. In a satisfactory design state the model is sufficiently accurate, the specifications
have been elaborated to the point that they reflect accurately the needs of the users of the
target software, and the derivation produces correct code with acceptable performance
characteristics.

There are various ways to build a simple initial design structure. The domain model
may include simplifying assumptions such as infinite memory or infinite precision arith-
metic. or unbounded rationality in agents. Several data types may be confounded. The
specification too may be oversimplified - perhaps dealing only with normal-case behavior
and a very restricted subset of the desired functionality. The derivation structure may
reflect a simple implementation strategy that yields correct executable code, but without
much efficiency. Or it could implement the specification on a nonexistant very-high-level
architecture. The derivation structure for a simple design state nonetheless records a
derivation of code that is consistent with the model and specifications.

This model of evolution is based on the pioneering work of Goldman [51 and Feather
[4] who are concerned with the evolution of specifications prior to implementation. Our
approach applies the incremental elaboration idea to the entire design process and puts
it on a rigorous basis.

5 CONCLUDING REMARKS

To conclude, we briefly discuss how our approach to software development treats
several important issues in software engineering:

Maintenance - This term is often used to cover at least two distinct development
activities: error correction and program enhancement. The use of correctness-
preserving transformations to develop programs from specifications gives us a far
higher degree of confidence in the consistency of program and specification. The
automation of the development process allows us to quickly prototype and validate
a specification in order to assess its consistency with our intuitive needs. Thus an
automated transformational development system should provide considerable as-
sistance in removing inconsistencies (errors) as a source of problems in software.
Software enhancement (evolution) remains then as the main driver of change in fu-
ture software systems. The ability to treat evolution as a central mode of software
development will be crucial to an effective model of software design.

UNCLASSI F I ED/UNL I MI TED

U N C L A S S I F I E D IU N L I M I T E D

B.1.9 AC/243(Panel 11)TP/1

" Reuse - The KIDS system and our model emphasize reuse, not of code, but of
application domain knowledge, general programming knowledge (of algorithms, data
structures, optimization techniques, etc.), and design decisions. We believe that this
kind of reuse will provide greater long-term leverage than libraries of code.

" Prototyping - The ability to quickly obtain an executable refinement of a specifica-
tion is the key to prototyping and the ability to perform validation on specifications.
KIDS (via REFINE) provides for the automatic selection of default implementation
choices for the constructs of our specification language. If defaults do not lead to
acceptable performance for validation purposes. then better design decisions may be
interactively applied in KIDS. The evolution mechanisms should enable elaborative
changes to the prototype specification to be propagated to the code, reusing the old
design decisions to aid the reestablishment of consistency.

" Integration of Paradigms - Our design model is much more formal and requires a
different kind of human involvement than current programming practice. Generally
there seems to be a serious problem with mixing formal methods with existing
software and design practice. The clean modular design that is encouraged by formal
specification methods is often broken down by optimizations during implementation
- efficiency often demands the sharing of partial results. One must recover the
initial system structure and subsequent elaborations and design decisions in existing
software such that the evolution techniques can be applied. Another approach would
be to apply the new methodology to certain critical modules and subsystems through
their lifecycie. A module for which consistency between code and specifications is
critical would be a suitable candidate.

Acknowledgements

I would like to thank Mike Lowry for his comments on a draft of this paper. This
research was supported in part by the Office of Naval Research under Contract N00014-87-
K-0530. and the Air Force Office of Scientific Research under Contract F49620-88-C-0033.

References

[1] ABRAIDO-FANDISO. L. An overview of REFINETtI 2.0. In Proceedings of the
Second International Symposium on Knowledge Engineering (Madrid, Spain, April
8-10. 1987).

[2] BALZER. R.. CHEATHAM. T. E.. AND GREEN. C. Software technology in the
1990's: using a new paradigm. IEEE Computer 16. 11 (November 1983). 39-45.

[3] CIP SYSTEM GROUP. The Munich Project CIP. Lecture Notes in Computer Science.
Vol. 29. Springer-Verlag. Berlin. 19S7.

UNCLASSI F I ED/UNL I MI TED

UNCLASSI F I ED/UNL IMI TED

AC/243(Panel 11)/i B.1.10

[4] FEATHER, M. Constructing Specifications by Combining Parallel Elaborations. Tech.
Rep. RS-88-216, USC/Information Sciences Institute, December 1987. To appear in
IEEE TSE.

[5] GOLDMAN, N. M. Three dimensions of design development. In Proceedings of
the 1983 National Conference on Artificial Intelligence (Washington, D.C., August
22-26, 1983), AAAI, pp. 130-133.

[6] GORDON. M. J.. MILNER, A. J., AND WADSWORTH. C. P. Edinburgh LCF: A
Mechanised Logic of Computation. Springer-Verlag, Berlin, 1979. Lecture Notes in
Computer Science, Vol. 78.

[7] HAREL, D. Statecharts: a visual approach to complex systems. Science of Computer
Programming 8. 3 (June 1987), 231-274.

[8] JACKSON. 'I. A. System Development International Series in Computer Science.
Prentice-Hall. Englewood Cliffs. NJ, 1983.

[91 LOWRY. i. R. Algorithm Synthesis Through Problem Reformulation. PhD thesis.
Computer Science Department, Stanford University. 1989.

,10J SMITH. D. R. Top-down synthesis of divide-and-conquer algorithms. Artificial
Intelligence 27. 1 (September 1985). 43-96. (Reprinted in Readings in Artificial
Intelligence and Software Engineering. C. Rich and R. Waters. Eds.. Los Altos. CA.
Morgan Kaufmann. 19S6.).

Lll] SMITH. D. R. Applications of a strategy for designing divide-and-conquer algo-
rithms. Science of Computer Programming S. 3 (June 1987). 213-229. (also Technical
Report KES.U.85.2. Kestrel Institute, March 1985).

!121 SMITH. D. R. Structure and Design of Global Search Algorithms. to appear in Acta
Informatica. (also Tech. Rep. KES.U.87.12. Kestrel Institute. November 1987).

'13] SMITH. D. R. KIDS - a semi-automatic program development system. to appear
in IEEE Transactions on Software Engineering special issue on Formal Methods.
September 1990.

1141 WILE. D. S. Program developments: formal explanations of implementations. Com-
munications of the ACf 26. 11 (November 1983). 902-911.

UNC LASS I F I ED / UNL I MI TED

NATO UNCLASSIFIED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 5. Date: 6. Total Pages:
1 15.04.91 9

7. Title (NU):

QUEST: Quality of Expert Systems

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
M. Perre

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
TNO Physics and Electronics Defence Research Section
Laboratory NATO Headquarters
P.O. Box 96864 B-1110 Brussels
2509 JG The Hague Belgium
The Netherlands (Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

ARTIFICIAL INTELLIGENCE, DATABASES, EXPERT SYSTEMS, QUALITY
CONTROL, KNOWLEDGEBASES

14. Abstract: This paper contains a summary of the results of the
technology project "QUEST: Quality of Expert Systems", carried out
under commission of the Dutch Ministry of Defence, Director Defense
Research and Development. Participants in the project are TNO Phy-
sics and Electronics Laboratory (FEL-TNO), University of Limburg (RL)
and the Research Institute for Knowledge Systems (RIKS). After an
analysis of the problems encountered in Expert Systems development,
a quality framework is developed which views the quality problem
from three perspectives: the quality of the development process, the
quality of the specifications and the quality of the expert system as
a product. In order to get a better grasp of the problem a number of
methods and techniques, derived from conventional and artificial
intelligence systems development, are reviewed. Secondly the concep-
tual similarities between databases and knowledgebases are stressed.
The use of conventional specification methods, in particular Nijssens
Information Analysis Methodology (NIAN), is considered. It is
demonstrated that the integration of database theory and artificial
intelligence signifies a step in the direction of a better quality
control of expert systems.

UNC LASS I F I ED /UNL I M I T ED

8.2.1 AC/243(Panel 11)TP/1

QUEST:
Quality of Expert Systems

by

M. Perre MA*

TABLE OF CONTENTS

1. IN QUEST OF QUALITY: INTRODUCTION
2. DEVELOPING A QUALITY FRAMEWORK

3. FROM DATABASE TO KNOWLEDGEBASE

3.1 Introduction

3.2 Conceptual modelling
3.3 Knowledgebase management system architectures

4. DAMOCLES: DAMAGE MONITORING AND CONTROL EXPERT SYSTEM
4.1 Introduction
4.2 Damage control management
4.3 Integrating artificial intelligence and database technologies

5. CONCLUSIONS

6. REFERENCES

INO Physas mad EJ~cams LaomM

Wuamnu Techmola Drnsm

Cammad Cams.! Woman Syuuns4~nowfmudDand SIAum Gmp

P.O. Dol 9 4

2509 JG "VA Hgwm

The Nedwwhin&

Fm +31 70323=061

Phon .3170 3 42 21

UNCLASSI FI ED/UNLIMITED

UNCLASS I F I ED UNL I M I TED

) AC/243(Panel 11)TP/1 8.2.2

1. IN OUEST OF OUALITY: INTRODUCTION

From december 1988 until january 1990 TNO Physics and Electronics
Laboratory (FEL-TNO), in collaboration with the University of Limburg (RL) and
the Research Institute for Knowledge Systems (RIKS), worked on a technology
project named "QUEST: Quality of Expert Systems" [1]. QUEST was carried out
under commission of the Dutch Ministry of Defence, Director Defence Research
and Development.

A strong motivation for this research project is the fact that more and more
conventional systems contain intelligent modules, without the assurance that
these modules satisfy the same rigorous quality measures as the conventional
ones do. In comparison with conventional software systems the quality of expert
svstems is viewed as not being very satisfactory. Some of the more problematical
aspects are knowledge acquisition, testing, evaluation and the maintenance of the
knowledgebase. As yet there is not much unanimity with regard to the ways in
which these problems have to be tackled [2]. This is an objectionable state of
affairs, especially when you are dealing with critical applications, e.g. proces
control systems in industry or nuclear power plants.

The same argument is also valid for military Command, Control,
Communications and Intelligence (C31) systems . A characteristic of these
systems is that they consist of large databases with which the deployment of men
and material is coordinated. Starting point of this discussion is the thesis that a
knowledgebase can be viewed as a collection of facts which can be manipulated
with intelligent rules. These rules are also stored as objects in the knowledgebase
[31. An added convenience of integrating an inference engine with such a
database system is that facilities like integrity, concurrency, security, recovery
and distribution can now be used inside what we call a knowledgebase system,
or expert system [41. The main theme of this paper is that the integration of
database theory and artificial intelligence signifies a step in the direction of a
better quality control of expert systems

2. DEVELOPING A QUALITY FRAMEWORK

It needs no argument that statements about quality of programming code
can only be made when the concept "quality" has been defined and made
measurable. Whether a piece of code has "a good quality" is difficult to establish;
The absence of quality, on the other hand, is much more obvious. The purpose of
this paragraph is to set up a framework in which the quality of expert systems
can be captured. There are three important aspects regarding the quality control
problem:

(1) Analysis of an object system resulting in specifications
(2) Development process of an expert system
(3) The expert system as a product.

The relation between these three aspects is reflected in the following formula!11:
PRODUCT = f(DEVELOPMENT PROCESS(SPECIFICATIONS)).

UNCLASSI FI ED/UNL IMI TED

pi,

UNCLASS I F I ED / UNL I M I T E D

B.2.3 AC/243(Panel 11)TP/1

Applying the development process on the specifications results in the
product "expert system". Quality can be controlled in three ways:

(1) Validation and verification of the system specifications
(2) A structured development process
(3) Test and evaluation of the product.

Specifications are of great importance during the whole development cycle
of the expert system, and many errors are only discovered after implementation.
This is the reason why the quality of specifications gets special attention in this
paper. In the validation process specifications are compared with the "reality", or
object system. It is determined whether system specifications are in agreement
with user needs and demands. In the verification process specifications are
compared with the implementation.

The necessity of a structured development process has long been
acknowledged, an example is System Development Methodology (SDM) [5].
Since 1987 there exists a version of SDM which is used primarily for expert
system development: Structured Knowledge Engineering (SKE) [6]. In this
methodology more specific expert system activities like knowledge acquisition
are worked out in detail. Another promisin approach is that of Weitzel and
Kerschberg, who are also proponents of so called expert database systems[7].

During the different phases in the development process (parts of) the system
has to be tested on functionality and accordance with user needs [8]. Testing
means looking at the behaviour 6f the system when it is "feeded" with a carefully
chosen collection of data (test cases). Evaluation of an expert system can be
viewed as conducting experiments with (parts of) a system and comparing the
generated "advise" with the solutions to problems given by human experts [91.

3. FROM DATABASE TO KNOWLEDGEBASE

3.1 Introduction

Relational database management systems (RDBMS) are primarily being used
for administrative applications. Concepts like data independence, data integrity,
controlled redundancy, security and privacy are also very important when you
are dealing with knowledgebase management systems (KBMS). Other reasons to
adhere to the relational model are its conceptual simplicity and the familiarity
system developers have with it. Most software producers are more experienced
in using ORACLE and INGRES than USP, PROLOG or Al-development tools
like KEE, ART or Knowledge Craft. Moreover it is not easy to become acuainted
with such advanced tools. By using an RDBMS update anomalies and redundant
storage can be prevented. It also offers a flexible growth path when operational
concepts are changed or data structures are modified.

3.2 Conetual Modelling

When a knowledgebase is viewed as a special kind of database, various
facilities of DBMS's could be used in KBMS's. Examples are recovery (to restore a

UNCLASSIFI ED/UNLIMITED

UNCLASS I F I ED / UNL I M I TED

AC/243(Panel ll)TP/1 B.2.4

knowledgebase after a calamity, fault or power failure), concurrency
(simultaneous utilization of a knowledgebase by different users), distribution
(physically distribute a knowledgebase over different locations), security (protect
a knowledgebase against unauthorized usage) and integrity (guard against
inconsistencies of the knowledgebase) [4]. Especially this last point enables a
direct relation with analysis and design methods of databases. Consequently,
there is a need to build a conceptual model of a knowledge domain. A conceptual
model can be placed between the internal model of a knowledgebase (the way in
which the relations are physically represented) and the external model (the way
the user sees the system) [101.

The conceptual model has to be a complete and consistent representation of
a knowledge domain in which a distinction is being made between a knowledge
schema (definitions of all used facts and relations) and the actual knowledgebase.
This distinction can also be seen as a separation of types and instances.
Consistency and completeness can be maintained by means of constraints on the
actual knowledgebase. A conceptual model has to be constructed with a
development method that lays down explicitly the definition of facts and their
interrelations. In an Al-methodology like KAIDS four levels of knowledge are
being distinguished [11l: domain, inference, task and strategic levels. NIAM,
Nijssens Information Analysis Methodology, and ExtendedNIAM, can be used to
strucure these four levels 6f knowledge [10,12,13).

3.3 Knowledgebase management system architectures

Several proposals have been made with respect to the architecture of
knowledgebase management systems (KBMS). Often a distinction is made
between loosely-coupled and tightl. -coupled KBMS's [141.

A loosely-coupled KBMS is an external database management system
(DBMS) that is interfaced with a logic programming language: e.g. the Oracle
DBMS coupled with the logic language Prolog. Prolog-rules in this configuration
can activate queries on the database.

In a tightly-coupled KBMS there is no distinction between a database
system and a logic language. This can be realized in two ways: Firstly a logic
language can be extende with database facilities like integrity, concurrency,
security, recovery and distribution. Secondly a DBMS can be extended with
deductive (Prolog-like) facilities. An interesting example of this architecture is
POSTGRES, a further development of the DBMS INGRES (Post Ingres) 15,16.

POSTGRES is a tightly-coupled KBMS developed at the University of
Southern California, Berkeley. The main aims of the project are to uphold the
relational model and to provide facilities for "active" databases and inference,
including forward and backward reasonin&. In many applications it is very
convenient to use triggers and alerters. Triggers are small pieces Structured
Query Language (SQL -program which can be activated when changes are being
made in the database (e.g. insert, delete or update). Alerters are comparable with
triggers, but are activated by time or date.

UNCLASSI FI EDIUNLIMI TED

q L

UNC LASS I F I ED / UNL I M I TED

B.2.5 ACI243(Panel 11)TP/1

The most revolutionary aspect of POSTGRES is the use of rules and
procedures as if they were plain data items. Nijssen views an expert system as asystem that contains human expertise and consists of a collection of related facts
[31. These facts can be inserted by a user, or can be derived by the syter itself
via on the basis of other facts and inference rules. Rules in POSTGRES can
perform forward and backward chaining. This can be achieved by "early" and
late" evaluation. In the case of early evaluation a change in a data item that is

containde in a rule will directly lead to activation of this rule. In the case of late
evaluation the change only becomes obvious when a user queries that particular
data item [151.

When inference rules are used in a KBMS, it is possible to perform a run-
time "computation" of a relation. In other words the system has at its disposal an
intension of the application (definition of tables, mutual dependencies and
inference rules) and when needed computes the extension (the actual facts in
tables).

Beside the innovations alreadv mentioned, POSTGRES also offers the
opportunity to represent complex objects, e.g. semantic networks. Actions like
"generalise"' or "specify" can easily be executef

4. DAMOCLES: DAMAGE MONITORING AND CONTROL EXPERT SYSTEM

4.1 Introduction

TNO Physics and Electronics Laboratory, in collaboration with the NBCD
School of the Royal Netherlands Navy, is developing DAMOCLES, a Damage
Monitoring and Control Expert System. The main purpose of the DAMOCLES
project is the development of an expert system which supports the damage
control (DC) officer aboard Standard frigates in maintaining the operational
availability of the vessel by safeguarding it and its crew from the effects of
weapons, collisions, extreme weather conditions and other calamities. Basically
DC-management includes the classical command and control cycle: status
maintenance, situation assessment, planning, tasking and evaluation. An
important way of making the total DC-organisation more effective is to improve
the quality of the decisionmaking process-by providing automated decision aids
to the DC-officer in addition to the information processing and presentation
facilities already available. This applies especially to damage assessment and
planning.

4.2 Damag cntrol mana, ment

In case a calamity has occurred, the DC-officer has to collect and combine
data from different sources (sensors, communication systems, orderlies etc.) in
order to assess the situation. On the basis of Otis, the DC-officer plans actions and
looks after the careful execution of these. There are a number of problems
interfering with the decision p ces: comple3ity of the vessel, uncertain and
incomplet infomation, time pressure and catastrophic effects of wrong
decisions. The DC-officer can only carry-out his duty when he has a lot of

UNCLASSI F I ED/UNLIMI TED

UNCLASS I F I ED / UNL I M I TED

AC/243(Panel ll)TP/1 B.2.6

experience with the vessel and the procedures which have to be executed.
Artificial intelligence provides the tools and techniques to use effectively the
knowledge about the vessel and to accept, combine and fuse the data from
sensors and reports. Therefore DAMOCLES has at its disposal: knowledge of the
spatial structure of the vessel, knowledge of the state of the vessel, knowledge of
procedures to be followed and knowledge based on experience of DC-officers.
The system is not only intended to be used aboard navy frigates but also in
training surroundings at the NBCD School.

The DAMOCLES project started with a detailed task analysis of the DC-
officer in which the following main task areas were identified: stability
monitoring and the prevention and repression of fire and damage. Thbe
DAMOCLES system assists the DC-officer in these tasks, most notably the
evaluation of thie situation (system monitoring and diagnosis), determination of
the measures to be taken (lplanning) and monitoring of the execution (plan-
monitoring).

4.3 Integrating artificial intelligence and database technologies

The DAMOCLES system is represented in terms of the layer model as put
forward in the Structured Knowledge Engineering Methodology [61: procedural
level (strategic and task level), inference level and domain level. However,
knowledge sources (inference level) and notions on the domain level [111 can be
represented much more accurately with NIAM (Nijssens Information Analysis
Methodologv) 1101. In this way the quality of extensive databases and knowledge
sources is better guaranteed. '

An obvious choice for the representation of a conceptual model of reality,
represented with NIAM, is a relational database. This implies that the domain
and inference level can be implemented in a relational database. The procedural
level has to be represented preferably in a relational programming language:
Prolog is a logical choice. One important aspect of an expert system is the
communication with the user. In DAMOCLES a graphics interface has been used
which can be manipulated with Prolog. In this way a conceptual uniformity
between functional specifications, database, programming language and
graphics interface comes into being.

The possibilities of a combination of a relational database and Prolog
surpasses those of conventional Al engineering environments. The following
extras can be envisaged:

(1) Check on the consistency of knowledge,
(2) Secure the knowledge against unauthorized usage,
(3) Distributed storage of knowledge,
(4) Multitasking and distributed processing,
(5) Recovery facilities and
(6) Availability of many development tools.

When simulations are being executed (planning task) it is also possible to
store different system states in separate databases.

UNCLASS I F I ED/UNLIMI TED

UNCLASS I F I ED /UNL I MI TED

B.2.7 AC/243(Panel 11)TP/1

The interface between DAMOCLES and the DC-officer has been given much
attention. At present a prototype of DAMOCLES is running on a Sun-
workstation equipped with a colour graphic display in order to present images of
underlying technical ship systems (e.g. ventilation and high pressure sea water).
These images consist of coloured block diagrams containing all relevant
information required for monitoring and control of these systems. In addition to
this, a 3-dimensional image of the ship with overlays of technical systems is used
to convey spatial information.

A relational database enhanced with Prolog offers good opportunities for the
transparant development of extensive and highly qualitative expert systems [171.
The usefulness of artificial intelligence and expert systems in DC-management is
demonstrated by the development process of the DAMOCLES system.

5. CONCLUSION5

The quality framework presented at the beginning of this paper is a good
guide-line for tackling the quality problem of expert systems. The concept quality
is viewed from three perspectives: the system specfications, the structunng of
the development process and the expert system as a product. The knowledgebase
is identified as the most important part of an expert system. Inference
mechanism, man-machine interlace and explanation facilities contain such an
amount of "conventional" components, that quality control can be achieved with
well known methods and techniques. Reliability and maintainability of the
knowledgebase are recognized as the principal quality criteria.

The development process of expert systems cannot easily be controlled. As
opposed to "conventional- life-cycle methbdologies, there is no accepted version
for expert systems. Experience kccumulated in the application of SKE and the
Kerschberg-Weitzel model could eventually lead to an easing of the problem.

The extended version of (conventional) NIAM provides good opportunities
for specifying knowledgebases. Es ially the way in which completeness and
consistency of the knowledge model is guaranteed, makes ENIAM a far better
choice than many other Al-specification methods.

Evaluation and testing of expert systems is an underdeveloped field of
study. Often it is not possible to test the" advise given by the system against an
objective standard. Methods focussed on a structured generation of expert
system test cases are not yet available. This is why the use of "conventional"
evaluation and test methodologies is advocated.

The example given of a system that is being developed along the lines
presented in this paper shows that an integration of notions derived from
database technology and artificial intelligence can be very helpful in the creation
of a non-trivial expert system.

UNCLASSI FI EDIUNLINI TED

UNCLASS I F I ED /UNL I M I TED

AC/243(Panel 11)TP/1 B.2.8

6. REFERENCES

[11 Lenting, J.H.J., M. Perre, "QUEST: Kwaliteit van Expertsystemen", FEL-90-
A012, 1990. -

[2] Napheys, B., D. Herkimer, "A Look at Loosely-Coupled Prolog Database
Systems",In: Kerschberg, L. (ed.), "Expert Database Systems, Proceedings from
the Second International Conference", 1989, pp. 257-271.

(31 Nijssen, G.M., "Knowledge Engineering, Conceptual Schemas, SQL and
Expert Systems: A Unifying Point of View",In: "Relationele Database Software,
5e Generatie Expertsystemen en Informatie-analyse", Congres-syllabus NOVI,
1986, pp. 1-38.

[41 Date, C.J., "An introduction to database systems: Volume 11", Addison-Wesley,
1983.

[5] Turner, W.S. (et al.), "System development methodology", 1987.

[61 Structured Knowledge Engineering, Syllabus Bolesian Systems Europe B.V.,
1988.

[7] Weitzel, J.R., L. Kerschberg, "Developing Knowledge-Based Systems:
Reorganizing the System Development Life Cycle", In: "Communications of the
ACM", Vol. 32, Nr. 4, 1989, pp. 482-488.

[81 Myers, G.J., 'The Art of Software Testing", Wiley, 1979.

(91 Llinas, J., Rizzi, S., "The Test and Evaluation Process for Knowledge Based
Systems", Technical Report F30602-85-C-0313, Calspan Corporation, June, 1987.

[10 Nijssen, G.M., Halpin, T.A., "Conceptual Schema and Relational Database
Design: A Fact oriented Approach", Prentice Hall, 1989.

[111 Breuker, J. (ed.), "Model-Driven Knowledge Acquisition: Interpretation
Models", University of Amsterdam, 1987.

1121 Creasv, P.N., "Extending Graphical Conceptual Schema Languages",
University of Queensland, 1988.

1131 Creasy, P.N., "ENIAM: A More Complete Conceptual Schema Language", In:
'Proceedings of the Fifteenth International Conference on Very Large Databases",
1989, pp. W0-114.

[141 Stonebraker, M., M. Hearst, "Future Trends in Expert Database Systems", In:
Kerschberg, L. (ed.), "Expert Database Systems, Proceedings from the Second
International Conference", 1989, pp. 3-20.

[151 Stonebraker, M. (et al.), "The POSTGRES Rule Manager", In: "IEEE
Transactions on Software Engineering", Vol. 14, Nr. 7, Juli 1988, pp. 897-907.

UNCLASSI FIED/UNLIMITrD

UNCLASSIFIED/UNLIMITED

B.2.9 AC/243(Panel 11)TP/1

[161 Stonebraker, M., L.A. Rowe, Ihbe design of POSTGRES", In: "Proceedings of
the ACM-SIGMOD Conference on Managemrent of Data", 1986, pp. 340-355.

[171 Brodie, M.L. (et al.)"Future Artificial Intelligence Requirements for
Intelligent Database Systems", In: Kerschberg, L. (ed.), "xpert Database Systems,
Proceedings from the Second International Conference", 1 989, pp. 45-62.

U N CL AS SI FIE D/U N L IMI T ED

NATO UNCLASS IF I ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Orlginator's Reference: 4. Security Classification:

UNCLASSIFIED/UNLIMITED
AC/243(Panel 11)TP/1 5. Date: 1 6. Total Pages:

15.04.91 9
7. Title (NU):

TEN15 - A High Integrity Kernel for Software Engineering
Applications

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
Dr. N.E. Peeling

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
RSRE MOD (PE) Defence Research Section
St. Andrews Road NATO Headquarters
Malvern B-1110 Brussels
Worcestershire WR14 3PS Belgium
United Kingdom (Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

SOFTWARE INTERFACES, PORTABILITY, HIGH INTEGRITY KERNEL

14. Abstract:

The TEN15 project is developing interfaces that decouple software
systems written in any high-level language from the hardware archi-
tectures on which these systems run. The lowest level interface,
TEN15 Distribution Format (TDF), is a potential Architecture Neutral
Distribution Format (ANDF) in which portable software can be dis-
tributed for a wide range of machines. Tenl5 is strongly typed TDF
with additional features to support system programming. Ten15 is a
good high-integrity kernel for supporting high-functionality,
portable secure systems.

N A T 0 U N C'L A SS I F I E D

r

U NC L A SSI FlIE D/UN LI MI TE D

C.1.1 AC/243(Panel 1I)TP/l

TEN15 - A HIGH INTEGRITY KERNEL FOR
SOFTWARE ENGINEERING APPLICATIONS

Dr N E Peeling

1INTRODUCTION

2 SOFTWARE PROGRAMMING AND DISTRIBUTION
INTERFACES

2.1 TDF

2.2 The Ten 15 high-integrity kernel

3 RELATIONSHIP WITH PTIs

4 CURRENT STATUS AND FUTURE PLANS

U N

UNCLASSI FT ED/UNLIMITED

J AC/243(Panel 11)TP/I C.1.2

TENI5 - A HIGH INTEGRITY KERNEL FOR
SOFTWARE ENGINEERING APPLICATIONS

1 INTRODUCTION

Computing Division at RSRE are working on techniques to improve the functionality, per-

formance and integrity of portable systems. The defence interest centres on the application

of these techniques to the development of operational secure Command and Information

(CIS) systems. and the development o" secure project development environments for such

systems.

RSRE are developing interfaces that decouple software systems written in any of a

wide range of progranuning languages from the architectures on which those systems will

run. These interfaces are in effect abstract machines because they completely hide the

underlying machine.

Two interfaces have been developed, the lower-level interface is called TDF (Tent5

Distribution Format) and addresses the problems of code-generation. It can be thought of

an extension of the idea of a universal compiler intermediate language. TDF is a poten-

tial ANDF (Architecture Neutral Distribution Format) which is a programming language

independent, machine independent format for the distribution of shrink-wrapped software

products.

On top of TDF there is a higher level interface called simply Ten15 [1], which can be

thought of as TDF with a comprehensive, rigidly enforced type system. The purpose of

the type system is to allow systems to be built on top of Tent5 which are both efficient

and offer high-integrity without limiting functionality. The type system is also compre-

hensive enough to allow Tenl5 to describe system programs that manipulate a permanent

datastore. and resources over a LAN.

A Ten15 system requires two main components: a portable translator to TDF; and

a run-time environment for accessing system resources such as main memory, filestore,

networks and other peripherals. Rigidly enforcing the type system in Ten15 allows the

Tenl5 kernel to implement safe. fine-grained resource allocation. The TenlS kernel can

implement a heap-oriented, garbage-collected common address space, which in turn allows

it to support first-class procedure values. The type system ensures that users' programs

can coexist in a common memory without any danger of one user's mistakes affecting

another user's program or data. These Iorts of feature allow modern, highly interactive,

object-oriented systems to be implemented efficiently and portably o top of the Tenl5

UNCLASSIFIED/UNLIMITED

C.1.3 AC/243(Panel Il)TP/1

kernel. Efficient, safe encapsulation of data using object-oriented techniques is one of the

key characteristics needed to implement modern secure systems.

2 SOFTWARE PROGRAMMING AND DISTRIBUTION

INTERFACES

The two interfaces, TDF and TenlS, serve different purposes:

2.1 TDF

As mentioned above, TDF is being developed as a potential Architecture Neutral Dis-

tribution Format (ANDF). An ANDF can be used to distribute shrink-wrapped software

products. An Independent Software Vendor (ISV) will produce a single version of a prod-

uct in ANDF which contains embedded system calls to resources in a system environment.

Customers can then purchase a piece of shrink-wrapped, ANDF software which can be

installed on any machine which provides the necessary system resources.

A widely accepted ANDF would help create as strong a market in software products

for the open systems running on the range of architectures that support UNIX as currently

exists within the compatible PC world. Such a market would benefit ISVs by both enlarg-

ing and opening up the market on UNIX, and reducing the costs of supporting versions

on multiple architectures. An ANDF would benefit end-users by increasing software avail-

ability. providing a more competitive market in software which should drive down software

prices as well as allowing a freer choice of hardware.

Although the development of a standard ANDF is being driven by the desire to create

a more vigorous software products market for UNIX. a widely available ANDF standard

would have a number of other uses. many of which are of interest to the defence community.

ANDF provides a interface that decouples programs from the features of any specific

architecture. This includes systems that prior to the availability of an ANDF were not

portable because they generated machine-code - e.g. Ada compilation systems. If a situ-

ation arises where most important software tools axe targeted at ANDF then it becomes

much easier to change the underlying hardware base. without affecting the software the

user wants o run. Two obvious advantages to the defence community are, first, the po-

tential to reduce the costs of mid-life hardware upgrades, and secondly, the freedom to

easily introduce new defence-specific architectwes e.g. secure computer hardware such as

SMITE 121 or verified safety-critical processors such as VIPER f3).
UNCLASS I F I E 0/UNL I M I TED

UNCLASSI FIED/UNLIMITED

AC/243(Panel 11)TP/1 C.1.4

An ANDF provides a single common point that all software passes through, no matter

what programming language it is written in and no matter what machine it is targeted

to run on. This means that an ANDF provides an opportunity to significantly improve

interoperability, both in mixed programming language systems and in mixed hardware

systems. For mixed language working, ANDF provides a common format in which con-

ventions can be defined for the new generation of compilers for the high-level programming

languages that produce ANDF output. These standard conventions can maximise the ex-

tent to which the different languages can interoperate. In a mixed hardware environment,

actions to be performed elsewhere in the network can be described in ANDF which is then

sent to the remote node in the knowledge that it can be translated to appropriate machine

instructions on the remote node.

TDF's strengths are a result of the fact that it is pitched at a higher level than more

conventional abstract stack or register intermediate languages (such as P-Code, or the gcc

intermediate language). It is defined at the level of abstractions of programming language

features - it contains abstractions of: numbers, variables, procedures, pointers, loops,

conditionals, exceptions. signals. threads etc. The coverage of language features makes it

suitable for conventional languages such as ANSI C, Pascal and Ada. and also for more

advanced languages such as Lisp and ML.

The close relationship of TDF and Teni5 also means that if TDF becomes the industry

standard ANDF then a secure TenIS-like interface can be very easily built on top of TDF

which will be available on all machines for which there is TDF support. A high-integrity

Teni5 kernel would he contructed from a high-level type checker which generates TDF. a

standard TDF installer and the Ten15 run-time environment.

2.2 The Ten15 high-integrity kernel

The single most important defence application for Ten15 is its use as a high-integrity

kernel for portable secure systems. Ten IS is not in itself a secure system because it does not

define and impose any particular security model: rather it provides helpful implementation

mechanisms that allows the designer of a secure system to design a system that mandates

any particular security model.

The Secure Processor Research team at RSRE has determined that there are four

essential mechanisms needed for the implementation of secure systems [4]:

1. Unforgeable. opaque addresses - which allow hidden objects to be created. The

opacity of the addresses means that the creation of a hidden object can give the
UNCL AS S I F I ED / UNL I M I TED

UNCLASSI FIED/UNLIMITED

C.1.5 AC/243(Panel I1)TP/I

creator no possible information about other users, as might happen if the addresses

could be interpreted as physical addresses in memory.

2. Data Hiding - which allows control of access to sensitive data, by hiding data behind

a procedural interface.

3. Pedigree - which guarantees the origins of critical objects, as they are passed around

within a system.

4. Context - which guarantees the correct authentication of users accessing the system.

In most existing secure systems these mechanisms can only be provided by severely limiting

the ways in which a system can be used. For example, pedigree can trivially be provided by

forbidding critical objects being moved dynamically within the system. As a result secure

systems are often extremely inflexible to the changing needs of the users of the system.

Tenl5 can provide the four mechanisms is a very flexible manner, largely as a result

of the powerful. rigidly enforced type system that permeates a Ten15 system. In Ten15,

objects can be created, encapsulated, passed between mainstore processes, and between

mainstore and filestore, in a totally unpredicted, but secure manner.

TenlS is defined algebraically and is a basis for the formal analysis of system properties.

This makes it a suitable input to static analysis tools for use in validating security or safety

critical applications. TenI5 has two potential advantages over existing methods: first, it

allows the possibility of analysing complete systems (as opposed to just free-standing

programs); and secondly, it can be used to generate trusted code directly from the Tenl5

which was analysed. Further research is planned with the University of York to study

techniques for building trusted code generators for Ten1S.

Because Tenl5 can represent arbitrarily complex programs, existing static analysis

techniques would only be able to analyse a subset of TenlS programs. We hope that

the presence of a range of compilers for high-level languages that generate TeniS will

encourage the development of increasingly advanced static analysis techniques which will

eventually be able to tackle all of TenlS. thus allowing analysis of programs written in all

the languages that compile to TenlS.

The role of TDF in aiding interoperability in a heterogeneous hardware environment

was mentioned in the last section. TenlS adds advanced features for dynamically creating

remote procedure calls and a common view of a structured. high-integriti filestore, as

further aids to interoperability.
o L P .. 0 A I A L U I W 1I L A I M I C U

UNCLASSI F I ED/UNL IMI TED

AC/243(Panel II)TP/1 C.1.6

The concept of filestore in Teni5 extends programming language data structuring in an

obvious way onto the backing store. The approach adopted is to provide general purpose

primitives which separate the idea of mainstore pointers from disc pointers. Bringing a

data structure from disc into mainstore, ie. turning a disc pointer into a mainstore pointer,

has to be done explicitly. The mechanisms underlying the Ten15 filestore are capable of

supporting complex databases where individual items can, if necessary, be very small (the

so-called "fine-grain'" database). The Tent5 filestore is a potentially more flexible and

efficient implementation mechanism for building distributed secure databases than are

existing technologies such as relational and entity/relationship/attribute databases, and

will be much easier to integrate with the programming languages used to implement the

system.

The provision of a sophisticated storage allocation mechanism was discussed briefly

in the introduction. The implementation of a garbage-collected common address space

provides a mechanism whereby mainstore datastructures can be efficiently communicated

or shared between different programs. This makes Tenl5 a very good kernel for developing

high-productivity programming environments. Such environments are becoming increas-

ingly important as software prototyping plays a larger part in the design process for large

defence systems. Software prototyping enables requirements to be clearly formulated and

design trade-offs to be assessed. Unlike other systems which have been used for proto-

typing but which depend on special purpose hardware (e.g. LISP, SMALLTALK and the

RATIONAL machines) Teni5 can be a cost-effective basis for both the development and

operational systems.

3 RELATIONSHIP WITH PTIs

Both TDF and Ten15 have been described as interfaces. Much work is currently in hand

on developing interface models for PSEs and specifically this has led to the concept of

Portable Tools Interfaces (PTIs). The TDF and Tenl5 interfaces fulfil a rather different

finction from PTIs as will now be explained.

Let us first determine what requirements PTIs such as PCTE+ J5] satisfy. PCTE+'s

most important feature is its entity management system (EMS). Other features such as

the process model and the user interface are to a certain extent being overtaken by devel-

opments at the UNIX system level, for example OSF/Motif is likely to become the defacto

standard presentation manager. and the development of lightweight process threads in

UNIX kernels such as Mach will probably find their way into the IEEE POSIX standard.
UNCLASSI F I ED/UNL IMI TED

UNCLASSI FI ED/UNLIMI TED

C.1.7 AC/243(Panel 11)TP/1

The EMS grew out of an appreciation that a UNIX-like filestore provided little or no

support for the complex interactions between the different types of data-objects that must

be handled in a large scale software development project. Such objects include software,

changes logs, data files, test and evaluation files, documentation, PERT charts, other

management planning aids, etc. etc. The EMS provides a sophisticated data repository for

storing, modifying and browsing this project database. More efficient project management

through the use of PSEs has been identified as a key requirement for reducing the costs

of procuring large software systems. This explains why PCTE+ has attracted so much

interest and support from both the civil and defence communities: from IEPG and from

ECMA.

The EMS supports the sorts of objects/attributes/relationships required in project

management. It does not however provide support for representing the sorts of datastruc-

ture that arise within programs and which need to be communicated between different

software modules. For example, consider the problem of &toring A complex piece of data

from a software system in the EMS. Examples of the sort of data handled in sophisticated

tools nught be a table of data from a spreadsheet, or the output from a syntax analyser

for a human readable language. The table from the spreadsheet is probably represented

in its system as a large two dimensional array of data. where each column of the array

holds a different class of data. and each row is an entry in the table. The output from a

syntax analyser is likely to be a tree dazastructure which gives the syntactic structure of

the language. P('TE provides no support for large arrays, or for tree structures, so to

store either of these data items in the EMS the user would have to explicitly "flatten"the

datastructure into a linear stream of bytes in order to store it in the contents field of an

object. To do this the tool writer would have to choose a convention for turning the two

dimensional array or the tree structure into a linear stream of bytes. This convention (and

there are an infinite number of acceptable conventions) would have to be understood by

any other tool writer who wished to read the datastructures from the EMS.

The restriction on the datastructures that can be handled by the EMS means that

PCTE- provides little explicit support to software tool interoperahility, configuration

management of software modules, and permanent storage of program generated data. The

EMS of PCTE+ and other PTIs do Little to help manage the data generated by the

activities within a software intensive project which are concerned with the actual design

and implementation of the software. Given that programming accounts for only a small

percentage of the actual cost of large software developments - does this matter? The

answer is yes for two reasons:

First. although it is minor part of the total effort it is the principle rason d'etre for

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TP/1 C.1.8

the whole process. This means that an improvement in programming productivity leads

to corresponding reductions in all the other dependent activities.

Secondly, cost reduction is not the only important issue to the customer. An equally

important aspect is the fitness for purpose and the reliable operation of the software system.

Techniques such as formal specification of software systems and fast prototyping techniques

are being advocated as a means of tackling these problems. Current developments in PTI

technology provide little or no support for these techniques which are intimately connected

with programming and implementation methods, and for which the performance overhead

of using the high-level entity/relationship/attribute model could pose a serious problem.

It is exactly these areas which PTIs do not address which are covered by the Tenl5 kernel.

4 CURRENT STATUS AND FUTURE PLANS

In order to allow the properties of the Tenl& high-integrity kernel to be assessed, RSRE

are working on a Tenl5 evaluation system. This is an extensible, advanced programming

environment comprising:

A simple but powerful HumaniComputer Interface which will be based on the ex-

perience gained with the editor from the RSRE FLEX PSE [61. This will use an

advanced hypertext format and will be user-extensible.

* Compilers for Pascal. Algol68 and Tenl5-notation. Ten15-notation is the main im-

plementation language of the evaluation system and serves as both an assembler for

Tenl5 (in that it allow, text to be written that will generate exactly any piece of

Tenl5 required) and as a high-level system programming language.

* A symbolic TenI5 debugger which the compilers for the different languages tailor to

their individual syntax.

e A separate compilation system.

* A framework of tools that allows the algebraic structure of Teni$ programs to be

manipulated by user-written programs.

The initial release of this system will be as a standalone environment on VAX/VMS or

SUN3. Later versions will extend the facilities to heterogeneous networks of Tenl5 ma-

chines.

U.N C L AS 5I F I E D / U N L I M I T E D

4,, ,m m~ mm m m mmmmmmll mmlm m m

UNC LASS I F I ED /UNL I M I T ED

C.1.9 AC/243(Panel l1)TP/1

The evaluation system is already in use within RSRE for evaluating Tenl5's potential

for support of secure systems. The evaluation system should be ready for use with collab-

orators outside RSRE towards the end of 1991. We hope to attract interest from research

teams in acadenia, industry, or other governmental research establishments. who could

use TenI5 to provide significant extra leverage to design challenging applications on top

of Ten IS.

References

jl Dr J AI Foster. The Algebraic Specification of a Target Machine: TenIS, High-integrity

software. ed C T Sennett, Pitman. 1989.

[21 S R Wiseman. H S Field-Richards. The SMITE Computer Architecture, RSRE Memo

No 4125. Jan 1988.

13' Dr W 3 Cullver. Dr C 11 Pygott. Application of Formal Methods to the VIPER

Microprocessor. IEF Proc Vol 134. pt E. No 3. May 1987.

4 S R Wiseman. Basic Mechanisms for Computer Security. RSRE Report No 89024,

Jan 1990.

15' Introducing P('TE-. Independent European Programme Group, Technical Area 13,

1989.

16' Mrs M Stanley. An Evaluation of the FLEX Programming Support Environment,

RSRE Report 86003. Aug 19"'6.

Copyright i' Controller HMSO. London. 1990

U N C L ASS I F I E D/ U N L I M I T E D

NATO UNCLASS IF I ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 5. Date: 6. Total Pages:
15.04.91 10

7. Title (NU):

Formal Program Developments

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
J. Cazin, R. Jacquart, M. Lemoine and P. Michel

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
ONERA-CERT/DERI Defence Research Section
2, Avenue E. Belin NATO Headquarters
B.P. 4025 B-1110 Brussels
31055 Toulouse CEDEX Belgium
France (Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

FORMAL DEVELOPMENTS, DEVELOPMENT LANGUAGE, TYPE SYSTEMS, TYPED
LAMBOACALCULUS, DEVA, REUSE OF DEVELOPMENTS

14. Abstract:

Formalizing program development aims at mastering the correctness
of programs, controlling the application of methods and tackling
reusability issues.

The development language DEVA is introduced, and the type system
it is based on is overviewed. Examples of use of DEVA to formally
express some developments are given. Reuse aspects related to
formal developments are illustrated.

NATO UNC'LASSI F I ED

U N C I FI E D , .I

fj UNCLASSI FI ED/UNL IMITED

C.2.1 AC/243(Panel 11)TP/1

FORMAL PROGRAM DEVELOPMENTS

J.Cazin'. R. Jacquart, M. Lemoine'. P.Michel*

CONTENTS

1 INTRODUCTION 2
2 THE DEVELOPMENT LANGUAGE DEVA 2

2.1 Technical basis
2.2 DEVA texts 3
2.3 DEVA contexts 4
2.4 Typing rules 4

3 FORMAL EXPRESSION OF DEVELOPMENTS WITH DEVA 6
3.1 Formal developments in a transformational approach 6
3.2 An example of a problem oriented specification 7
3.3 A piece of development 7
3.4 Expression using DEVA 8
3.5 Reuse of formal developments 9

4 CONCLUSION 9
References 10

ONEA-CETr/DrIm
2. Agims Edi'd Dehi. 31055 Tamdoui Coez - FRANCE
Tel: (+33) 61 55 70 55
Fax: (+33)61 3 71 12
Emil: camutds-a.cem.fr

t • " ° - - f * |* 1 • t#?' "!'

UNCLASSI FI ED/UNLIMITED

AC/243(Panel ll)TP/1 C.2.2

1. INTRODUCTION
A few years ago, formal developments were still considered an academic task. The

main reasons were the size of addressable problems, the heaviness of notations, the lack of
support tools, and the time overhead compared with usual empiric developments. These
few arguments become more and more obsolete excepted for the last one: formalizing
developments is still ressource over consuming. Nevertheless we can observe a growing
interest of industrial companies for formal methods applied to real scale problems. Real
experiences like compiler construction, user interface development of safety critical systems,
security systems development are reported in [8]. Several reasons can explain this change
of interest:

1. formalizing developments aims at mastering the correctness of the developed objects. This
is specially the case for safety critical systems. It has been observed that usual systematic
testing methods become less and less applicable when the complexity of systems grows.
Indeed. tests themselves must be formally specified to be credible, and this activity is
also time consuming. In this case formal developments become competitive.

2. it is in common agreement that rigorous methods are mandatory to be used to produce
correct software. But it makes no use to define such methods without giving means to
control their appicaton. Such a control must dispose of a formal notion of development
it can refcr to when checking the correctness of a given development step.

3. developments, when totally formalized, give a complete precise description of the set of
steps leading from a specification to the corresponding program. If they are represented
by terms which can be manipulated by higher order functions, they become reusable and
applicable to different close problems. Then the overcost becomes acceptable.

The present paper is based on some partial results of two European projects: ToolUse
and REPLAY2 . The first one - ToolUse 121- aimed at producing a software development envi-
ronment offering a high level of parameterization. In this environment, software development
methods are formally defined, and their application is checked. This implies the formalization
of the developments themselves. A major issue of the project is the development language
DEVA which will be overviewed in section 2. Examples of use of this language to formally
express developments ae given in section 3.

The second project - REPLAY 131 - aims at studying reusability of formalized
developments. This is an original point of view compared to the usual practice of reusing
developed components. The approach will be shortly illustrated in sub-section 3.5

2. THE DEVELOPMENT LANGUAGE DEVA

2.1. Technical basis
A major characteristics of the environment developed in the ToolUse project is to be

restitution free. Thai means that notations and tools which are the basis of the environment

STIOdLe OW REPLAY or pN fadW 6 ESMRIT. I pmme

UNC L ASS I F I ED /UNL I M I TED

UNCLASS I F I ED /UNL I M I T E D

C.2.3 AC/243(Panel 11)TP/1

are not devoted to a specific method or to particular specification and programnming languages.
As a consequence, the DEVA language has been defined as a very general notation to support
a calculus on developments.

DEVA can be briefly described as a typed lambda-calculus with dependent types.
The main works which influenced its definition have been the Automath project [6], the
Calculus of Constructions [4]. and Intuitionistic Type Thery[5]. The general idea driving the
definition is to give means to describe the developed objects, the development steps and the
underlying rules as terms (the so-called tew introduced in section 2.2) and to use a general
typing mechanism to control the correctness of these objects. Moreover developments, and
underlying theories can be structured and organized using the context expression introduced
in section 2.3.

The basic elements supported by DEVA are briefly introduced in the following sections,
together with the main rules of the typing mechanism. A complete description of the language.
and a formal definition of its semantics can be found in [7].

In the following we shall use the following syntactic conventions:
x,yz.xiyiji ... stand for variable symbols.
:a ,Au ... are DEVA texts. More often ni is used to denote the type of the text ti.
c~ci ... are any DEVA context.

2.2. DEVA texts

The texts objects are the basic entities supported by DEVA. Each text is typed and
types are themselves typable texts. So we dispose of a recursive system supporting dependent
types, which starts with an initial text primal which is untypable.

construction syntax comments
initial text primal the only untypable DEVA text
symbol x x must be declared or defined (see contexts)
abstraction Icl-ti the usual lambda-abstraction
application tl(:2) tl must be an abstraction over the type of t2
judgement tl.:2 the type of tl is judged to be t2
sum 11 /t21.../tm)
product Ix):-tl,v.:=mn xi can be used as projection operators

Table I Mare am mmacwas

Some features am supported by DEVA to express control. They are also expressed by
means of texts which can be nuinpulated as other ones with the same rules.

construction syntax Iconmnents
sequential composition i o t2 the usual functional composition
case distinction case tl of &2 tl is a sum and t2 a corrsponding product
iteration loop t stops when the rsulh is applicable

Table 2 cmmam for COmI sas

U NC LASS I F I E D /U N L I M I T E D

UNCLASS I F I ED/UNL IM ITED

AC/243(Panel ll)TP/1 C.2.4

2.3. DEVA contexts

The notion of context allows to structure the developments expressed in DEVA.
Contexts are used to express theories the developments are based on: for example, basic
mathematical theories, logics, algebraic data-types, specification and programming languages,
and rules constituting a method.

Contexts are built up as sequences of declarations allowing to introduce new typed
symbols. Definitions allow to give a name to a given text, and can be considered as
abbreviations. Moreover. contexts can use each other through the mechanism of importation
which gives access to the declarations, and definitions present in another context.

construction syntax result
empty context nilc
text declaration x.z x is a new symbol of type t
text definition x:=t x is a new symbol abbreviating the text t
implicit definition x?t x is a text of type t to be synthesized
sequential composition ['/cl;c21l the two contexts cl and c2 are appended
context definition part p := c p is a new symbol abbreviating the context c
context importation import c the symbols visible in c become visible
context application c(t) c where the first declaration is substituted by t
symbol renaming clx=:y c where x is renamed to y
symbol hiding c.x c where x is no more usable

Table 3 mnam conttex constmctors

The scoping rules arc fairly simple: each symbol introduced at a given place in a
sequence is usable in the following of the sequence, symbols defined in a given context are
usable after the importation of that context. importation is transitive.

2.4. Typing rules

DEVA texts can be considered as A-terms of a typed A-calculus. A text is well-formed
if it is built up using correct construction of texts introduced hereabove. A well-formed text
is valid if it is well-typed. A context is valid if it is made of declaration and definitions of
valid texts.

The following rules aim at giving some intuition of the typing mechanism supported
by DEVA. V, (c.c 2} states the relative validity of a context c2 in the context3 of cl. V. {c}
represents the absolute validity of a context outside any other contexL Vt {c, I} is the validity
of a text t in a given context c. E, {c.11, 2) is the equivalence of two texts it and t2 in a
given context c and T (c. t) the type of the text t in the context c.

Some rules stating valdtu' of texts can be given to illustrate typing mechanism:

R., : Vt fc, primal)

In fi fawlloWug m id wm u of :-m * w h m -"i fmm ohm On camomus ot , tz c am viibie"

UNCLASS IF I ED /UNL I MITED

-A._ _,m~,mm mm -.- mm m mm mmm m

UNCLASS I F I ED /UNL I M I TED

C.2.5 AC/243(Panel 11)TP/l

V {ci.;C } V,{({Ic,;c 211,t}
V, {c,, [C ;- t]}

V1{c,[X:z it - t 2]} Vs{cfl} Et{c,T(c,t 1),1t1}
Vt c,[z : ti - t2](it)}

Vt{c.it} Vt{c..-2 } E,{c,T(,tl),t 2}
V, (C, tt I.'. 92}

RI, rule introduces validity of the initial text in any context. R rule states the validity of
an abstraction provided that the abstraction context c2 is valid in the context c, and that the
abstracted text is valid in the sequential composition of cl and c2. RL3 rule states the validity
of a text application: each argument must be valid in the current context c. and the applied
text [zI : tt I- 1t2] must be an abstraction the first element of which is a declaration of a type
:tj equivalent to the type of the text t, on which the application is done. Rt4 rule states the
validity of a judgement: the type of the first argument must be equivalent to the second one.

Validity of contexts can be described in a similar manner:

RI,: V. {nilc}

R. 2: V, {c} - V, {nilc. c}
V{} fJ v,({c} V, {c. c,} V, [Ic; c,1],c 2}

V, {c. nilc} V,{cf c,,c 2 J}
{v(C} V, 1c.i} V.{} Vt c.t) V. {c} V, 1c.t}
V.(c.z:t} R.: VC {c.z :=t} .,: V(CX^:t}

The absolute vaLditv is true for the empty context (R,, rule) and it amounts to relative validity
in empty context for any other context c (R,2 rule). R3 and R 4 rules allow to decide the
validity of a context by checking the validity of its sub-contexts. R¢5, R.6 and R,7 rules
allow to introduce new declarations or definitions of text t, provided that this text is valid
in the currmnt context c.

In order to make following sections understandable, the definition of the typing
function must be also sketchy introduced for symbols. abstraction and application:

T (c.primal) - undef T(nilc.z) = undef
t if z and y are the same symbol
T (c.z) otherwise

T (c, t) if z and are the same symbol
T (c, z otherwise

T a (c, - T(1lc:cl,.t)] T(c.t1 (1,)) - T(c, t) (t.)

Finally the equivalence of 2 texts E, {c,t I,t2) is defined as the transitive closure of
reduction operations. These rules ae a generalisation of the usual O-reduction which is the
basis of the)A-calculus. It is not detailed her.

UNCLASSI F I ED/UNLIMITED

UNCLASSI F I ED / UNL I MI T ED

AC/243(Panel 11)TP/1 C.2.6

3. FORMAL EXPRESSION OF DEVELOPMENTS WITH DEVA

3.1. Formal developments in a transformational approach

The developments that will be mantpulated in the following are based on a trans-
formational approach. In such a framework, the developed objects constitute a continuum
from specification to program, and one object is produced from previously existing ones by
applying elementary transformations.

The transformations we shall use are based on the foldlunfold system, originally
developed by Burstall and Darlington (1]. It allows to transform programs specified as a
set of equations down to the level of programming language, and it is specially tailored for
developing programs in an applicative style.

To develop a program in such a framework, we have to dispose of an initial rigorous
specification. In our examples, this will be formulated in classical set theory. We do not worry
about producing this early specification which is a problem of requirements engineering, out
of the scope of our work. The development will be expressed in a context summarized on
figure I in which:

- each data-type involved in the development is typed. Types are defined in a specific
DEVA context Sorts

- the Equatons context defines properties of equations betwen objects having the same type
- elementary data-types like Sets. Pairs. propositions are defined in specific contexts
- Specific Functions contains the definitions of functions which arc in common use although

not defined in basic data-types (like Filter. Map, aso...)

Initial I- - -

Lantage Specific Systan
Cons~uoI Functions

Speci fication JSpec I Sipe:2 Pros

Figure I A scheratic developnet and its conlext

UNCLASSI F I ED /UNL I M I TED

U NC LA S SI FI E D/UN L IM ITE D

C.2.7 AC/243(Panel II)TP/1

-Target Language Construcionss allows to introduce in a progressive manner, the basic
expressions the developed program will be made of.

3.2. An example. of a problem oriented specification

The example given heitafter is a rigourous specification of the solution of a real life
problem (typing of human cells and serumn in biological area).

H=& {,EkL+VzE.3mEkt-zEm}
Gred'=% aEAI~redje.X))

E t m E + Ip MA... r~.. i # I- . 4H }

HlI {pt'*VzEP.3mEE-gEm}

Although this expression is short, the problem is totally specified and the corresponding
program has been formally developed in the REPLAY project so as to give a basis for
reusability experiments. In the following. we will only focus on the two first expressions.

3.3. A piece of development

The part of the development corresponding to the computation of the first set is given
in a semni-formal understandable way:

A

L'f 5I A139 I.SAn.V1EtA-4iII)Am1I

L" uJP SA13
Y n-SAREII-I eIAt.-I2I) izpw,111pu(l)I1

U NC LA SS I F I E D/UNIL I MI TE 0

UNCLASSIFIED/UNLIMITED

AC/243(Panel II)TP/I C.2.8

where xwe. must be understood as applying Rule (with right substitutions) to a sub-
expression of Exp , produces Exp,.

3.4. Expression using DEVA

To formally express this development with DEVA, we must first give an expression for
the elementary operation (the "unfold") allowing to replace the left hand side of an equation
by its right hand side inside the right hand side of another equation.

01.52 ' '?orts; zi'si; C2,52:s; f!($fs2]

To use the first rule, we have only to apply it to two arguments whose the DEVA types are
z_. , and r,t.r2. The other parameters will be synthesized, and we shall get something

of type r:=J(Yti.

Let us consider the first step of development
L gfpEVIAdI(p.+)E1}

L"- %p IP..l(p,+)r=1l

It expresses that starting from a specification of t +, we decide to keep the information pEPIA
only as a typing information (i.e. we represent the powerset VIA in intention). So we must
represent with DEVA:

1. the first level of sets {1ES!IqrIl this will be done with the constructor.

So [$'sort; 5:,,e1(s); PU:[s1-irop]I,-,,etfs]
4

2. the second level where we decide of a representation in extension or in intention, and
where we keep typing information: it ,IP~l will b represented with another constructor.

.z: Is'sort; P:(st-peep)I-.ets)]

3. the rule representing the design decision to represent a set in intention:
s'sor. ,:setlsi; P:[0ipropl

4. the initial definition of L+ with the corresponding type:

/": setl)

dc l t . E -S ... ,ie,.Aj,[p:sdt .)a-.,l (p,+),)])

5. the first step consist then in unfolding the whole right hand side of the equation using
the intei rule:

step; . .id(,.tusl| wi.,[p:setia)i-asni (p,+),)]),defL +)

and so. we get the result as the type of the resulting application (judgement has been
used to exhibit this type).

UNCLASSI F I EO0 UNL IMI TED

U NC L AS SI F I ED /U NL I MI TE D

C.2.9 AC/243(Panel 1l)TP/l

The whole development can be expressed the same way, each elementary step build
a text the type of which is an equation which wil be itself the type of input argument of
the next step.

umj2 =aflold~existro(...),step,)

.* 4 -So ((p:aetf a)-z~(ppsaell)raI(uupX.dpmp+)]

atep3:m uodplS?4.)ac2

;se- infoldimoopsompO ...),solspg)

3.5. Reuse of formal developments

An interesting application of formally described developments is to reuse them to deal
with problems close to each other. In this case the formal expression of the early development
must be modified to take into account characteristics of the new problem. This is done
in DEVA using high~er ordcr function. For example, in the problem oriented specification
introduced in sub-section 3.2. we can notice that the specifications of i±- can be deduced
from the specification of t:+ only by changing + to -, and the corresponding definition
defKe to del tL. This can be simply expressed in DEVA usin meta abstractions followed by
instanciation on the right values:

det L t:-EmS.opoirI A Ij to: sce I iso I (ua-).1t)

'.L-m=vapf pi ljolleri rusissl :p oiUEU.r W.tsIp*2 r I- -i.1'I

So we get in one step a correct development for the second set.
This operation is fully general and can be applied on substantial pieces of development.

to discard some particular pans and replace them by other.

4. CONCLUSION
The DEVA language overviewed in this paper is a powerful notation which allow to

express the semantics of development in a totally formal way. The examples given in this
paper ame very sketchy. but we can mention that DEVA is able to support significant examples
like some description of VDM and JSP/JSD methods.

The DEVA language is supported by an evaluator which can be considered as a high
level type-checker. It forbids the user to cheat with the application of a method, enforcing

him o frmaly escibeall the developments steps he follows.

U dec Nb U C L ASSI F I ED/ UN L I MITE D

UNCLASSIFI ED/UNLIMITED

AC/243(Panel 11)TP/1 C.2.10

What may look like a heavy task in a first shot development is, on the contrary.
fruitful in the context of reuse, and allows to get in a few steps programs correct wrt their
specifications.

Up to now, DEVA has been mainly used to address the problem of developments of
correct sequential-programs. In the future, it will be used to support formal developments
of concurrent embedded systems.

References

[11 R.M. Burstall and J.Darlington. A transformation system for developing recursive
programs. JACM, 24(l):44-67, 1977.

(21 J. Cazin. R. Jacquart, M. Lemoine, P. Maurice. and P. Michel. Method driven
programming. In IFIP 89. 89.

[31 J. Cazin. R. Jacquart. M. Lemoine, and P. Michel. Manipulation of formal developments
expressed in deva. In K.H. Bennett, editor, Software Engineering Environments. Ellis
Horwood. 89.

(41 T. Coquand and G. Huet. Constructions: a higher order proof system for mechanizing
mathematics. In EUROCAL 85. 1985.

[5] P. Martin-Lof. Constructive mathematics and computer programming. In Hoare and
Shepherdson. editors. Mathematical Logic and Programming Languages, pages 167-184.
Prentice Hall. 85.

[6] R.P. Nederpelt. An Approach to Theorem Proving on the Basis of a Typed Lambda
Calculus. Springer Verlag, LNCS 87. 1980.

[7] M. Sintzoff. M. Weber. Ph. de Groote. and J. Cazin. Definition 1.1 of the generic
development language deva. Technical report, Esprit. 89.

[8) J.C.P. Woodcock. Formal techniques and operational specifications. SEE notes. 14(5), 89.

UNCLASSIFIED/UNL IMITED

NATO UNCLASSIFI ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 S. Date: 6. Total Pages:
1 15.04.91 11

7. Title (NU):

Automated Support for Development and Evolution of Complex
Software Systems

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
Jack C. Wileden

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
Dept. of Computer and Defence Research Section
I nformation Science NATO Headquarters
Lederle Graduate Research 8-1110 Brussels
Centre Belgium
University of Massachusetts (Not a Distribution Centre)
Amherst, MA 01003, USA

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

ENVIRONMENT, OBJECT MANAGEMENT, TYPE MODELS, PERSISTENCE, INTER-
OPERABILITY, CONCURRENCY ANALYSIS, CONSTRAINED EXPRESSIONS,
AUTOMATED TOOLSET

14. Abstract:
The demand for ever greater levels of reliability in ever more

complex software systems, especially those that are highly con-
current, distributed, or subject to stringent real-time constraints,
demands increasingly powerful automated support for software deve-
lopers. For the last several years, our work, in collaboration with
our colleagues in the Arcadia consortium, has been directed toward
the development of advanced software environment and tool technology
that will provide the necessary automated support for software deve-
lopers. Two major foci of our work have been (1) the object mana-
gement capabilities needed in a basis integrating infrastructure for
advanced software environments and (2) analysis tools applicable to
concurrent, distributed and real-time software.

In this paper, we sumnarize our work in these areas, indicate how
it fits into the larger Arcadia project framework, and suggest future
directions for efforts aimed at developing advanced software environ-
ment and tool technology.

NA T U NC LASSTFIED

UNCLASS I F I ED/UNL I MI TED

C.3.1 AC/243(Panel 11)TP/1

AUTOMATED SUPPORT FOR DEVELOPMENT AND
EVOLUTION OF COMPLEX SOFTWARE SYSTEMS

Jack C. Wileden'

Contents

I INTRODUCTION 1

2 ARCADIA AND SDL 1

3 OBJECT MANAGEMENT 2
3.1 T ype M odels . 2
3.2 Persistence 3
3.3 lnteroperability 4

4 ANALYSIS TOOLS FOR CONCURRENT SOFTWARE 4
4.1 Constrained Expressions 5
4.2 The Constrained Expression Tools 6
4.3 Experiments with the Toolset 7

5 SUMMARY AND CONCLUSIONS 8

Associate Professr of Computet and Information Scince.
University of Masaachusetts. Amherst. Masaechusett 01003 USA

UNCLASS I F I ED /UNL I M I TED

..

UNCLASSIFI ED/UNL IMI TED

AC/243(Panel 1I)TP/1 C.3.2

I INTRODUCTION

The demand for ever greater levels of reliability in ever more complex software systems,
especially those that are highly concurrent, distributed, or subject to stringent real-time con-
straints, demands increasingly powerful automated support for software developers. For the
last several years, our work, in collaboration with our colleagues in the Arcadia consortium, has
been directed toward the development of advanced software environment and tool technology
that will provide the necessary automated support for software developers. Two major foci of
our work have been 1) the object management capabilities needed in a basic integrating infras-
tructure for advanced software environments and 2) analysis tools applicable to concurrent,
distributed and real-time software.

In the area of object management capabilities for environments, we have developed a variety
of type definition models and mechanisms. These have been specifically tailored for use in de-
scribing the components of software environments and also the components of software systems
that could be developed using those environments. We have also developed and implemented
an approach to adding persistence as an orthogonal property of typed objects. We believe that
this approach to persistence provides the basis for moving from environments based on files to
environments organized around a space of persistent typed objects. Finally we have developed
the Specification Level lnteroperability approach to supporting interoperation of software writ-
ten in several different languages We have produced an initial prototype implementation of
this approach to interoperabilit v that demonstrates its effectiveness by integrating a collection
of software development tools written in Ada and Lisp.

In the area of analysis tools applicable to concurrent, distributed and real-time software,
we have d'velnped. and built a prototype toolset supporting, the Constrained Expression
approach Constrained expressions are a language-independent, event-based, closed-form rep-
resentation for behavior of systems We believe that this representation is particularly ap-
propriate for describing concurrent, distributed or real-time system behaviors. Our current
prototype toolset supports the analysis of concurrent systems described in an Ada-like design
language. The results of our initial experiments with the toolset have been very encouraging.
These results indicate that the constrained expression approach has the potential to be of
practical use in analyzing reabstic problems in concurrent or distributed software design. We
have also carried out an initial experiment in analyzing some timing properties of a concurrent
system. Our success in this experiment has led us to continue investigating the applicability
of the constrained expression approach and tools to real-time system problems.

In the remainder of this paper. we give a brief overview of the Arcadia project, summarize
our own work in the areas of object management and analysis tools for concurrent software,
and suggest future directions for efforts aimed at developing advanced software environment
and tool technology

2 ARCADIA AND SDL

The Arcadia project ;15*, is a collaborative software environment research program en-
eompassing groups at several universities and industrial organizations, including the Software
Development Laboratory (SDL) at the University of Massachusetts. The objective of Arcadia
is to develop advanced software enviroutment technology and to demonstrate this technology

UNCLASS I F IED/UNL IMI TED

UNCLASSI FI ED/UNLIMITED

C.3,3 AC/243(Panel 11)TP/1

through prototype environments. The initial Arcadia environment prototypes are being built
primarily in Ada and targetted primarily to support Ada software development.

The principal research areas being addressed within the Arcadia project are environment
architecture, user interface management, support for process definition and actualization, ob-
ject management, support for measurement and evaluation, analysis techniques and tools, and
language processing tools. Various researchers at various of the Arcadia sites are involved
in working on each of these areas. In the present paper, we summarize only a subset of the
work on object management and analysis tools that has been carried out within SDL. Readers
interested in a more comprehensive overview of Arcadia research in these two areas or in other
areas of Arcadia research are referred to I151 and the papers cited therein.

3 OBJECT MANAGEMENT

Extensibility, integration and interoperability are three important goals for Arcadia en-
vironments. Much of our recent effort in SDL has been directed toward the definition and
implementation of support for the object management capabilities that we believe to be cru-
cial for building integrated and extensible environments supporting tool interoperability. One
focus of this research has been type models for (persistent) object management in environ-
ments. Another primary focus of the research has been on implementing persistent objects
in the context of strong abstract typing Our final focus has been on approaches to support-
ing tool interoperability, environment extensibility and integration. We briefly describe these
efforts in the foUowing subsections.

3.1 Type Models

One component of mir work on typing support for environment developers has been the
definition of a type model that we call Olos 1131 (We distinguish between type system, a
specific collection of types developed for use in some application (such as a particular software
environment or tool), and type model, a framework or mechanism for defining type systems.)
The Olos type model is intended to permit environment builders and users to define types
for environment components, such as tools or process programs, as well as types for software
product components, such as requirements, designs. code. plans, and so forth. We believe that
such pervasive typing can play a central role in improving the organization, increasing the
reliability and facilitating the evolution of environments and the software systems that they
are used to build.

The Olos type model supperts both the definition of types and the determination of
inter-type relationships. Our choices of the primitive types, type definition scheme and type
constructors for Oaos reflect our views concerning the fundamental kinds of entities that
make up a software envirownent, the equally important roles of relationsips and operations in
defining the types of those entities, and the need for precise, powerful and flexible specification
of inter-type relationships. We are currently experimenting with the application of these facets
of the Olos model to the description of varius environment components to assess the accuracy
of our views and the eftcacy of the model We are also designing prototype implementations of
ORos. Finally, as described in section 3.3, we are employing a subset of OQios in a prototype
implementation of our approach to supporting interoperability. Through experimenting with

UNCLASSI F I ED/UNL IMITED

UNCLASSIFIED/UNLIMITED

AC/243(Panel Il)TP/1 C.3.4

such prototypes and refining Oaos we expect to produce a specification of the type modelling
capabilities needed in advanced software development environments such as Arcadia.

3.2 Persistence

We believe that the availability of a persistent object store, smoothly integrated into the
language(s) used by environment and tool builders, will dramatically simplify the building
of environments. Our research on persistence has been directed toward 1) identifying an
appropriate set of abstractions through which environment designers and tool builders can
manipulate persistent objects, and 2) exploring implementation strategies for persistence.

The PGRAPHrTl system 1171 is our currently operational prototype of a persistent object
capability This system is a preprocessor that accepts definitions of abstract graph data types,
specified in the Graph Definition Language (ODL) [7), and produces an Ada implementation
of the specified graph types incorporating orthogonal persistence. PGRAPHITE provides envi-
ronment designers and tool builders with three sets of abstractions for manipulating persistent
objects. namely persstent object, persistent store and graph abstractions. Our persistent ob-
ject abstraction augments the operations available on any type with operations that can make
individual objects of that type become persistent. Hence the persistence property is orthogonal
to any other properties of a type. persistence can be controlled on an instance by instance basis,
and tools interact with a persistent store containing persistently typed objects, rather than
with a file system containing only one persistent type (namely file). Under the PGRAPHITE
persistent store abstraction, tools can access persistent stores, which are called repositories,
only during a session, and a tool must explicitly indicate the beginning and end of sessions.
Sessions provide a basis for concurrency manRgement and hence support sharing of persistent
graph nodes, both among tools and between two or more graphs.

Our implementation strategy has several interesting features. In order to preserve abstract
typing and information hiding, object classes manage their own persistence in PGtAPHITE.
Efficiency of both memory utilization and 1/O traffic is increased through fault-driven retrieval
of objects. The PGOAPHITE processor automatically generates Ada implementations of ab-
stract types and repository managers While this automatic generation capability is currently
available only for abstract graph types describable in GDL, the approach is completely gen-
eral and we have manually applied it to a wide range of types. We have also ported our
PGRAPRITE implementation to several different underlying storage managers, including Ada
DirectiO and the Mneme system i12. This porting is facilitated by the standardized Storage
Manager Interface that is part of the PGRAPHITE implementation architecture.

Through use of the PGRAPHITE system. both within SDL and at several other sites, we
are exploring several important issues concerning persistent typed object management in envi-
ronments. We are currently working to extend PGRAPHITE by automating the generation of
additional types, and by adding support for concurrency, version control and garbage collection.
We are also investigating "principled" approaches to limiting the extent of persistence, which
will complement the reachability-based definition of extent of persistence that is provided by
PGRAPRITE 119!.

U N CL A SSI F I ED/ U NL I MI TE D4

UNCLASS I F! ED/UNL IMITED

C.3.5 AC/243(Panel l1)TP/1

3.3 Interoperability

There is an increasing need and desire to develop systems, and especially environments,
by combining components that are written in different languages and/or that are run on
different kinds of machines. Success at this depends in large part on the interoperability of the
components-that is, the ability of the components to communicate and work together despite
their differing backgrounds. While most previous approaches to interoperability have provided
support at the representation level, we are pursuing an approach that will provide support at
the specification level. We have developed a model of Specification Level Interoperability (SLI)
!181 that consists of four components: 1) a unified type model, which is a notation for describing
the entities to be shared by interoperating programs; 2) language bindings, which connect
the type models of the languages to the unified type model; 3) underlying representations
and implementations, which realize the types used by the diflerent interoperating programs;
and 4) automated assistance, which generally eases the task of combining components into
an interoperable whole. To demonstrate and investigate SLI, we have created a prototype
realization of the approach and applied it to achieving interoperability of several components
of the constrained expression toolset described in section 4.2.

The unified type model (UTM) concept is central to the SLI approach. The intent is that
a UTM should serve as a basis for tool cooperation within a richly structured collection of
environment components. Integration will be enhanced by permitting the tools to share and
exploit the rich structure of those components. This is in direct contrast to the Unix model,
for example, a representation level approach to interoperability that forces tools to interact at
the level of byte streams. The richer structure supported by a UTM will permit consistency
checking (e.g., type checking) and will free tools from the necessity of explicitly translating
(parsing and/or unparsing) inputs and outputs. A UTM can be viewed as a semi-strong
coupling of environment components - stronger than tvpeless byte streams, but weaker than a
single fixed type system. We believe that this intermediate position is the key to simultaneously
attaining interoperability. integration and extensibilitv.

The UTM included in our initial prototype realization of SLI represents an attempt to be
compatible with a variety of existing or proposed type models and type systems and is also
intended to be appropriate for short term practical use in Arcadia prototypes. This initial
UTM is based upon a simple subset of Otos concepts. It consists of a set of type definition
primitives, a set of relationships or constructor functions, a set of "special" types, and some
semantics for manipulation of instances. We have successfully used this UTM in our prototype
SLI realization to describe and support automatic generation of multilingual implementations
of an object type that is central to the constrained expression toolset.

4 ANALYSIS TOOLS FOR CONCURRENT SOFTWARE

A wide variety of techniques have been proposed for analysing the behavior of concurrent
softwsre systems. These differ in their underlying models of concurrent computation, in the
questions about behavior they attempt to answer, as-d in the stages of the software development
process in which they are applied. It is. of course. unlikely that any single approach to analysis
can possibly mee all the needs of software developers throughout the development process.
Therefore. the goals of the Arcadia project include developing, and facilitating the integration

UNCLASSI FI ED/UNLIMITED

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TP/1 C.3.6

of, various approaches to analyzing the behavior of concurrent software systems.
In the following subsections we briefly describe one such approach, called the Constrained

Expression approach, a prototype toolset supporting that approach, and the results of some
preliminary experiments with the toolset.

4.1 Constrained Expressions

In the constrained expression approach to analysis of concurrent systems, the system de-
scriptions produced during software development (e.g., designs in some design notation) are
translated into formal representations, called constrained ezpression representations, to which
a variety of analysis methods are then applied. This approach allows developers to work in
the design notations and implementation languages most appropriate to their tasks. Rigorous
analysis is based on the constrained expression representations that are mechanically generated
from the system descriptions created by software developers.

This subsection contains a brief overview of the constrained expression formalism. A de-
tailed and rigorous presentation is given in 181, and a less formal treatment presenting the
motivation for many of the features of the formalism appears in (4]. The use of constrained
expressions with a variety of development notations is illustrated in (41 and (10].

The constrained expression formalism treats the behaviors of a concurrent system as se-
quences of events. These events can be of arbitrary complexity, depending on the system
characteristics of interest and the level of system description under consideration. Associating
an event symbol to each event, we can regard each possible behavior of the system as a string
over the alphabet of event symbols

We use interleaving to represent concurrency. Thus, a string representing a possible be-
havior of a system that consists of several concurrently executing components is obtained by
interleaving strings representing the behaviors of the components. The events themselves are

assumed t,, be atomc and indivisible. "Events" that are to be explicitly regarded as over-
lapping in time are represented by treating their initiation and termination as distinct atomic
events

The set of strings representing behaviors of a particular concurrent system is obtained by
a two-step process. First. a regular expression, called the system ezpression, is derived from
a description of the system in some notation such as a design or programming language. The

language of the system expression includes strings representing all possible behaviors of the
system. It may. however, also include strings that do not represent possible behaviors, as the
system expression does not encode the full semantics of the system description. This language
is then "filtered" to remove such strings. using other expressions, called constraints, which are
also derived from the original system description. A string survives this filtering process if its
projections on the alphabets of the constraints lie in the languages of the constraints. The
constraints (which need not be regular) enforce those aspects of the semantics of the design
or programmung languace. such as the appropriate synchronization of rendezvous between
different tasks or the consistent use of data. that are not captured in the system expression.

The reasons for this two-step process. which might not seem as straightforward as generating
behaviors directly from a single expression. are discussed in (101.

Our main constrained expression analysis techniques require that questions about the be-
havior of a concurrent system be formulated in terms of whether a particular event symbol,

UNCLASS I F I ED/UNL IMI TED

UNCLASS I F I ED/ UNL I M I TED

C.3.7 AC/243(Panel 11)TP/1

@sD desk
•u .-... 1.8""

Figure 1: Diagram of Constrained Expression Toolset

or pattern of event symbols, occurs in a string representing a possible behavior of the system.
For example, questions about whether the system can deadlock might be phrased in terms of
the occurrence of symbols representing the starvation of component processes of the system.

Starting from the assumption that the specified symbol, or pattern of symbols, does occur
in such a string, we use the form of the system expression and the constraints to generate
inequalities involving the numbers of occurrences of various event symbols in segments of the
string If the system of inequalities thus generated is inconsistent, the original assumption is
incorrect and the specified symbol nr pattern of symbols does not occur in a string correspond-
ing to a behavior of the system If the inequalities are consistent, we use them in attempting
to construct a string containing the specified pattern.

4.2 The Constrained Expression Tools

After manually applying the constrained expression analysis techniques to a number of small
examples with encouraging results (e-g.. 1i1, 141. 151, r161), we began to construct prototype tools
automating various aspects of the analysis. The prototype toolset (see Figure 1) consists of
five major components: a denver that produces constrained expression representations from
concurrent system designs in a particular design language: a constraint eliminator that replaces
a constrained expression with an equivalent one involving fewer constraints; an inequality
generator that generates a system of inequalities from the constrained expression representation
of a concurrent system; an integer pror omming package for determining whether this system of
inequalities is consistent or inconsistent, and. if the system is consistent, for finding a solution
with appropriate properties: and a bekasor generator that uses the constrained expression and
the solution found by the integer programnung package (when the inequalities are consistent)
to produce a string of event symbols corresponding to a system behavior with the desired
properties The organization of the toolset is illustrated in the figure.

The runent toolet is intended for ase with designs written in the Ada&hased design lan-
guage CEDL (Constrain.d xprsion Jesign Languag) 9 91. CEDL focuses on the expression
of communication and synchronization among the tasks in a distributed system, and language

UNCLASS I F I ED IUNL I M I TED

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TP/1 C.3.8

features not related to concurrency are kept to a minimum. Thus, for example, data types
are limited, but most of the Ada control-flow constructs have correspondents in CEDL. The
deriver in the CEDL toolset is written in Ada, and was developed using Arcadia-produced
versions of standard compiler construction tools plus PGRAPHITE. The constraint eliminator,
the inequality generator, and the behavior generator are all written in Common Lisp, while the
integer programming component, which is built on top of the MINOS optimization package
114], is implemented in FORTRAN. As mentioned in the previous section, we have used our SLI
techniques and prototype tools to implement interoperability between the Ada and Common
Lisp components of the toolset.

4.3 Experiments with the Toolset

We have begun to use the prototype toolset in the analysis of concurrent systems. The
preliminary experiments reported here represent an initial attempt to determine the practical
limitations of automated support for the constrained expression approach to analysis. A num-
ber of variations of four different systems have been analyzed. First, a standard formulation of
the dining philosophers problem provides a basis for comparison with other analysis techniques
because of its widespread use as a benchmark problem. The addition of a host task controlling
entry to the dining room indicates how the introduction of intra-task dataflow affects too] per-
formance. The readers/writers problem requires analysis of more complex data flow patterns.
Finally, we analyze an automated gas station example in which both the synchronization pat-
terns and intra-task dataflow are relatively complex. Varying the number of philosophers in
the dining philosophers problems indicates how increasing the number of tasks in the system
being analyzed affects tool performance.

The table in Figure 2 gives CPU times for the application of the components of the toolset
to these systems, All times are in CPU seconds on a Sun 3 /60, except for the deriver time in the
DPII- 14 case, where memory limitations forced us to run on a 3/260. The first section of the
table, with systems labeled DP-n, gives data for analyses of the standard dining philosophers
problem involving n philosophers. A bug in the behavior generator prevents us from completing
the analysis of the I)P-10 case. The next section, with systems labeled DPH-n, gives data for
analyses of versions of the problem with n philosophers and a host task that prevents deadlock
by limiting the number of philosophers in the dining room. The third section gives the results
for two versions, one incorrect and one correct, of the readers/writers example 161. In the
correct version, the analysis determunes whether an error flag, representing a violation of the
appropriate mutual exclusion, is ever set. The symbol representing the setting of this flag
is correctly elinunated by the constraint eliunator; once this is recognized by the inequality
generator, no further analysis is necessary. Times for analyses of two versions of Helmbold and
Luckham's automated gas station Il , one with a potential deadlock and the other without,
are given in the last section. More information on these systems and the analyses (but with
less current performance data) is provided in 12!

These initial experiments with the prototype constrained expression toolset are encour-
aging. The toolset provides complete automated analysis of a range of standard concurrent
system examples. Even the prototype versions of the tools are efficient enough to be useful to
software developers on examples of moderate size. Unlike the standard approaches to concur-
rencv analysis, which are based on a reachability tree construction that grows exponentially

UNCLASS I F I ED/UNL I MI TED

UNCLASSIFI ED/UNLIMITED

C.3.9 AC/243(Panel 11)TP/I

constraint inequality i nt. prog. behavior total CPU
system deriver elimninator generator (IMINOS) generator time

DP-3 1 74 1 9 2 19 105

DP-41 i 62 2 11 3 26 124
DP-511 34 3 14 3 32 146
DP-6 109 4 17 4 36 172
DP-6 142 7 24 5 54 232
DP-10 177 11 30 7

DPH.3 II 123 , 16 3 - 146

DPH-4I 133 9 I 22j 4_ 168
DPH-5 152 14 1 30 6 - 202

DPH-61 174 38 j 7 - 236
DPH-S 1 207 31 57 1 1 - 306
DPH-10 2501 49 82 30 -- 411

DPH.-14 1; 233 1 101 [135 1 57 -i 526

RW- l1 43 1 6 f 91 71 1241 1891
RW-C I 63 1 10 2 1 - - 75

GAS-I1 ! 75 21 i 30 13 T21 060
GAS-C :. 76 16 1 23 13 -j 125

Figure 2: CPU times, in seconds, for the constrained expression tools.

with the number or concurrent tasks being analyzed. our toolset does not appear to suffer from
exponential performance degradation as problem size increases. Furthermore, earlier experi-
ments show that the constrained expression approach can detect a variety of errors and can
be used with a broad range of design notations and progranrnming languages.

We are currentlv reimplementing the behavior gtenerator. to remove the bug that we have
encountered in the DP-lO case. to enable it to use all the information provided by the solution to
the system of inequalities. and to add some additional functionality We expect that significant
improvements in its performance will result from the use of more information from the solution.

While improving the prototype toolset. we have also begun to explore additional appli-

cations for constrained expression analysis, some of which may lead to enhancements to the
underlying formalism and further modifications to the tools. In particular, we have begun
to study the application of the constrained expression approach to various scheduling and
real-time problems !31

5 SUMMARY AND CONCLUSIONS

In this paper we have provided brief overviews or our work on two important aspects of
automated support for development and evolution of complex software systems. Our work
on type models. persistence and interoperabibtv is representative of the directions that ob-

ject management capabilities for environments are likely to take over the next decade. Our
constrained expression toolset is an example of the automated analysis techniques that will
be required if such environments are to adequately support development and evolution of

UNC LASS I F I EDD UNL I M I T ED

UNCLASS I F I ED /UNL I M I TED

AC/243(Panel 11)TP/1 C.3.10

concurrent, real-time or other classes of complex software.
Perhaps the most fundamental aspects of our object management work are its emplia-

sis on strong, abstract typing, and its tendency toward incorporation of object management
capabilities (e.g., persistence) into the language in which tools are implemented, as opposed
to the current practice of providing such capabilities via a database or file system. We be-
lieve that these directions will be important factors in increasing integration, extensibility and
interoperability in the next generation of software development environments.

While we believe that the results of our experiments with our prototype constrained expres-

sion toolset are significant, we see the empirical approach to evaluation of proposed approaches
to software analysis that the experiments represent as equally important. Only by carrying
out such empirical evaluations, preferably using a suite of standard examples, can the relative
strengths and weaknesses of various proposed approaches be determined. Assembling collec-
tions of tools with known, complementarv capabilities on top of infrastructures that facilitate
their integration and interoperability is the most promising approach to providing automated
support for development and evolution of complex software systems.

Acknowledgments

This work was supported in part by NSF grant CCR-87-04478 with cooperation from
DARPA (ARPA order 6104), by NSF grant CCR-8806970 and by ONR grant N00014-89-J-
1064. Alexander Wolf has played a major role in all of the object management research de-
scribed in this paper. Lori Clarke. William Rosenblatt and Peri Tarn have also made important
contributions to the SDL object management work reported here. Many others of our Arcadia
colleagues have provided valuable input to this work, George Avrunin and Laura Dillon have
been centrally involved in the development of the Constrained Expression approach to analysis
of concurrent software systems. Susan Avery, Ugo Buy, James Corbett, Michael Greenberg,
RenHung Hwang, and George Walden have played important roles in the development of the
toolset and the experimental evaluation reported in this paper.

REFERENCES

III G. S. Avrunin. Experiments in constrained expression analysis. Technical Report 87-125, De-
partment of Computer and Information Science, University of Massachusetts, Amherst, November
1987.

121 G. S. Avrunin. L. K Dillon. and J. C Wileden. Experiments with Automated Constrained
Expression Analysis of Concurrent Software Systems. In Proceedings TA 11-SIGsOFT89: Third
Tesaing, Analysis and Veriflcahon Sympoam, pages 124-130, December 1989.

131 G. S. Avrnnin. L. K Dillon, and J. C Wileden. Constrained expression analysis of real-time
systems Technical Report 89-50. Department of CompAter and Information Science, University
of Massachusetts. 1989

141 G. S. Avrunin, L. K. Dillon. J. C. Wileden, and W. E. Riddle. Constrained expressions: Adding
analysis capabilities to design methods for concurrent software systems. IEEE Trans. Sofiic. Eng.,
SE-12(21:278-292, 1986

UNC LAS SI F I ED /UNLIMITED

UN CL A SS I F IE D/U NL I MI TE D

C.3.11 AC/243(Panel 11)TP/1

151 C. S. Avrunin and .1. C. Wileden. Describing and analyuing distributed software system designs.
ACM Trans. Prog. Lang. Syst., 7(3):380-403, July 1985.

[6) R. H. Carver and K.-C. Tai. Detection of synchronization errors in concurrent software by
semantics-based analysis. Preprinit, 1988.

!7) L. A. Clarke. J. C. Wileden, and A. L. Wolf. GRAPHITE: A meta-tool for Ada environment devel-
opnment. In Proceedings of 2nd International Conference on Ada Applications and Environments,
pages 81-90, April 1986.

181 L. K. Dillon. Analysts of Distributed Systems Using Constrained Erpressions. PhD thesis, Uni-
versity of Massachusetts, Amherst, 1984.

!1 L. K. Dillon. Overview of the constrained expression design language. Technical Report TRCS86-
21. Department of Computer Science, University of California. Santa Barbara, October 1986.

1101 L. K. Dillon. G. S. Avrnnin, and .1 C. WVileden. Constrained expressions: Toward broad ap-
plicabilit *v of analysis methods for distributed software systems. A CAI Trans. Prog. Lang. Syst.,
l0(3):374-402, .July 1988.

1111 D. Helmbold and D. Luckham. Debugging Ada tasking programs. IEEE Software, 2(2)-47-57,
March 1985.

121 I. E. B. Mass and S. Sinofsky Managing Persistent Data with Mneme: Designing a Reliable,
Shared Object Interface. In Proceeding of the Second International Workshop on Object Oriented
Data Bases. Springer-Verlag. September 1988

1131 W. R. Rnsrnblnt. J. C Wileden, and A L Wolf OROS- Toward a Type Model for Software
Development Environments. In Proceedings OOPSLA '89: Confercnce on Object-Oriented Pro-
gramming: Systems. Languages. and Applications. pages 297-304. October 1989.

1141 N1. A. Saundrrs. MINOS system manual Technical Report SOL 77-31. Stanford University,
Department of Operations Research. 1977

151 R. N Taylor, F C Briz. L, A Clarke. L, J Osterweil. R W. Selhv. 3. C. Wileden, A. L. Wolf,
and M.)Y:oung Foundations for the Arcadia environment architecture. In Proceedings SJGSOFT
'88: Third Symposium on Software Derelopmeng Environments, pages 1-13, December 1988.

116i 1. C. Wileden and C S Avrunin Toward automating analvsis snpport for developers of distributed
software. In Proceedings of the Eighth Interniational Conference an Distributed Computing Systems,
pages 350-357. IEEE Computer Societv Press. June 198S.

1171 3 C. Wileden, A. L Wnlf. C D Fisher. and P L Tart PGRAPHITE: An Experiment in Pet-
sistent Typed Object Management In Proiceedings SIGSOFT '88: Third Symposium on Software
Developmnent Environmnent.s. pages 130-142. December 1988

1181 3. C. Wileden. A. L. Wolf. W. R. Rosenblatt. and P L. Tat. Specification level interoperabihity. In
Proceedings of the Twelfth International Conference on Software Engineering. pages 74-85, March
1990.

1191 J. C. Wilewfrn. P. L. Tarr. and L A. Clarke Extending and Limiting PCRAPHITE-style Persis-
tence. Submitted.

11 N C L A S S I F I E 0D U N L I M I T E D

NATO UNCLASS IF I ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 5. Date: 5. Total Pages:
15.04.91 10

7. Title (NU):

Object-Oriented Languages for Interoperability and Incremental
Development of Command and Control Information Systems

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
Alain M. Bories

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
ALCATEL ISR Defence Research Section
523 Terrasses de 1 'Agora NATO Headquarters
F-91034 Evry Cedex B-1110 Brussels
France Belgium

(Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

OBJECT-ORIENTED LANGUAGES, INCREMENTAL DEVELOPMENT, INTER-
OPERABILITY, COMMAND AND CONTROL INFORMATION SYSTEMS

14. Abstract:

Traditional software development methodologies are not well
suited for Command and Control Information systems. Main drawbacks
are the 5 to 10 year-usual time lag between the assessment of
operational needs and the delivery of the system, the rapid obsolence
of information technologies and the constant evolution of the users'
needs. The result often is the delivery of a system which does not
meet the current requirements, even if, in the best cases, it meets
the initial requirements provided in the specifications. A proposed
way of overcoming such drawbacks is to build the system in an
incremental fashion. The use of object-oriented languages is a key
feature to successfully address this issue.

N A T 0 U N.C L A S S I F I E D

UNCLASSIFIED/UNLIMITED

C.4.1 AC/243(Panel II)TP/I

OBJECT-ORIENTED LANGUAGES

FOR INTEROPERABILITY AND INCREMENTAL DEVELOPMENT OF

COMMAND AND CONTROL INFORMATION SYSTEMS

Alain M. BORIES

Table of contents - Historical Overview
- Command and Control Information Systems

(CCIS)
- Object-Oriented Languages (OOL)
- CCIS and OOL
- Conclusion

* Deputy Director for Marketing and Strategy, Alcatel ISR

U N C L A S S I F I E D /U N L I M I T E D

UNCLASSI F I ED/UNLIMITED

AC/243(Panel 11)TP/1 C.4.2

This paper begins with an historical overview of past failures in
CCIS. It then overviews the characteristics of CCIS. After a brief
description of object-oriented languages, it explains how and why the
use of these languages solve many problems for CCIS development.

I - HISTORICAL OVERVIEW

Many failurfs have occured in the past concerning CCIS. What has been
seen are :

* delays in the delivery of the system
* obsolescence, meaning that the techniques used are out of date whe
the system is delivered ;

* non-compliance, not with the initial specs, but with what the user
thinks his system might do.

These facts are not independant. They result mainly from the 5 to 10
years time lag between the assessment of operational needs and the
delivery of the system. This is not compatible with the rapid
obsolescence of information techniques, coupled with the constant
evolution of the user's needs and changes in his organization and
procedures. For example, if it is suddenly being decided that Air
Defense and Tactical Forces will be managed by a combined Air
operations center, it will not change the radars, but it will
dramatically change the CCIS.

As can be seen in figure 1, the initial specification is done with
some technical margin. The problem is that this margin decreases as
the user's need evolves. If nothing is done to adapt the specs to the
user's needs, it comes out an obsolete system which does not fulfill
the user's needs and which will not be used even though it is
compliant with the initial spec. If something is done to adapt it to
the user's needs, it may come to a point where the technical level of
the initial system is not high enough to comply with the new specs.

Figure I System evc1ution

TECHNOLOGY

USER'S NEEDS

......................- IMPROVED SPEC. 2

TECHNICAL -----------
LEVEL -IMPROVED SPEC. i

INITIAL
SPECIFICATION-

UNCLASS I F I ED/UNL IMI TED

UNCLAS SI F I ED/UNL I MI TED

C.4.3 AC/243(Panel 11)TP/1

Another reason for failures is the lack of visibility of traditional
methodologies (paper specifications) for the end user due to the
different interpretations of natural language words. Figure 2 is a
humoristic illustration of the fact.

Figure 2:

Misunderstandings

II - COMMAND AND CONTROL INFORMATION SYSTEMES (CCIS)

What is a CCIS ? It may be described as a network of decisions
centers, which may be called agents : they may be automatic processes,
staff brainstorming, single human beings, etc... Each of them
receives, processes and dispatches pieces of information. The process
involved in each decision center adds value to the initial piece of
information as shown on figure 3.

Figure 3 Agregation of infcrmation

UNCLASSI FI ED/UNLIMITED

ql

UNCLASSI FI ED/UNL I MI TED

AC/243(Panel 11)TP/1 C.4.4

The whole process allows to make information more agregated and
useable for decision because the bandwidth of the piece of information
is reduced as each agent adds value to it (figure 4).

Figure 4 :

Fusion of information

I 3 3 4
.ratia

The main characteristics of CCIS are

- the man -in-the-loop concept : man, that is to say the operator, has
to be taken into account in the design of the system, because he is
involved in the decision process. It is not just a matter of
man-machine interface, where man is outside but tries to interact with
the system the best way he can. In CCIS, man is part of the system and
is a constraint.

- interoperability : that means that data handled by each agent are to

be homogeneous throughout the whole system, and the procedures are to
be compatible. It is not just a matter of having the same
communications protocols ; but really the same understanding of the
data and processes.

- evolutivity : as have been seen. a main reason for failure is the lack
of evolutivity. The system has to be designed in order to be able to
handle changes in needs, in procedures or in techniques.

- security : that includes confidentiality, but also data integrity and
reliability which is a sine qua non condition to the process of
decision - making through such a system. And also testability, that is
to say the ability to check that the system is doing what it is
supposed to do.

III - OBJECT-ORIENTED LANGUAGES (00L)

Before going on on CCIS, this paragraph will give a very short
description of object-oriented languages, to be able to show their use
in CCIS. And first, what is an object ? An object is a representation
of a real-world entity that is an encapsulation of visible data and
methods with hidden (or protected) data structure. Each object may

UNCLASSI F I ED/UNL IMI TED

U NCL A SS I FI E D/UN LI M ITE D

C.4.5 AC/243(Panel 11)TPI1

send messages to other objects to invoke an operation (when this
operation is visible) in another object. An object receiving a message
will activate the method corresponding to it (figure 5).

Figure 5
Object structure

MESSAGE

METHO
A

ME

MET 1400

In a more p. actical way, the representation of the real world may be
depicted as shown on figure 6. with its modelization through
objects. Scenarios in the real world are message exchanges in what
may be called "the object-oriented world".

Figure 6 Object-criented approach to represent the real world

4ft -09$-" 0C

........) ~ -

U N C L~~ A S bY S I

UI N-

UNCLASSIFIED/UNLIMITED

AC/243(Panel II)TPI1 C.4.6

Objects belong to classes and sub-classes which are themselves

objects. Characteristics are inherited from upper-level objects. This

is particularly useful to be able not to repeat all the

characteristics which are derived from the class to which the object

is belonging. Figure 7 shows an example of the object description of a

system.GOD is the uppermost class. It means General Object

Descriptiorf (!).

Figure 7 Principles of inheritance

GOD

AICPAF AJRFOACE STAFF
Sr I

SOMSER FG4TE PILOT MECKANC

uFT HEAVY FuGHT FIELD
BOYBER BOMBER ENGINEER MECHANIC

Each object is described by its name, the class to which it belongs,
its characteristics, visible or not, the methods which may be applied
either to external or to internal data, its visibility to or from
other objects, and the exceptions allowing to assess error conditions.

An example is shown on figure 8 : an airspace corridor, which may be
used for an airspace management system. This corridor is composed of
several objects, for example, a parallelepiped with some
characteristics : length, width and so on. One method embedded in the
object "corridor" is the computation of the total length. More
interesting is the way the corridor is built during the design
process. It interacts through messages with other objects such as
terrain objects, other corridors, regulations (which are an object
consisting of several methods) and so on. It will interact also with
the object aircraft", allowing or not an aircraft to be in the
corridor space, depending on its occupation. We can go further and
further and build a whole airspace management system like that.

Figure 8 3,

Example of an object V*VN -

Iffiqal 6ieth.I lef t g eLrtA q th I jloe&

UN C LASS I F I ED /UN L I T M ED

UNC LASS I F I ED UNLIMI TED

C.4.7 AC1243(Panel 11)TP/I

To summarize the differences between traditional languages and
object-oriented languages, figure 9 shows the functional approach with
data processed by procedures, and the object oriented approach where
objects are sending messages, data and methods being embedded in theobjects.

Figure 9 ,*&ACT ONINACI ______

Functional vs . ,V , ,'d S ,a DOES ,o , YIM 5]

Object-oriented
approaches.

D TA W

IV - CCIS AND OOL

This paragraph will try to show why and how object-oriented approaches
may answer the problems of CCIS development which have been
emphasized before. Following are the main characteristics of CCIS, and
why object-oriented languages are well-suited to them.

- first, the man-in-the-loop concept : the use of rapid prototyping
has often been emphasized to deal with this characteristic because
it allows frequent checking of the exact users'needs.
Object-oriented languages are well-suited for this because they have
the key advantage of being a representation of the real world, easy
to build by a medium intelligent user, so to speak. They reflect the
process of designing CCIS with very little need of technical
expertise.

- interoperability : this is embedded in the description of objects.
All users are sharing the same objects with the same characteristics
and data, which are therefore described as common entities with
well-agreed behaviour.

- evolutivity : as have been seen. it is very easy to create new
classes or new objects by instanciation of an existing class, or
modify existing objects by adding new characteristics and methods.
This what may be called "granularity" (rather than modularity)
enables the designer to start from simplified objects or a reduced
set of objects, thus allowing incremental development. This is
essential for dealing with the problem of the time lag between
specification and delivery of the system. The prototype may be
constantly improved and put into operational use as soon as it
provides significant improvement to the former version. Evolutivity
is also enhanced by the simplification of 1he problem. Usuilly

UNCLASSI F I ED/UNL IMI TED

UNCLASSIFI ED/UNLIMITED

J AC/243(Panel 11)TP/1 C.4.8

complexity increases exponentially with the number of links between
data and processes in conventional development methodologies. With
object-oriented languages, granularity and communication between
objects through the exchange of messages gives a quite linear
increase of complexity, as shown on figure 10.

Figure 10

- at last, security it is handled by the notion of hidden data, each
object being allowed to see only some parts of another object. The
operator is a particular object and is cleared to access to certain
parts of the objects, data and/or methods.

The integrity of data was also mentioned before : this 1s ensured by
what may be :alled the "packaging" of data and t T notion of
inheritance : a change in a characteristic or a method is inherited

by lower classes objects and checked by the objE:t-oriented
environment itself.

As far as reliability of data is concerned, all users have the same
defintion of cata and methods, and "plausibility" may be set as a
characteristic of a given object, which will have the same meaning
for the whole system and which will be processed and combined with
other plausibilities by the mean of methods.

As far as testability is concerned, it is handled through the
granularity of the object-oriented approach which enables an
automatical non-regression process.

UNCLASS I F I ED /UNL I MI TED

C.4.9 AC/243(Panel 11)TP/1

At last, the problem of the understandability of the specifications is
better handled through QOL, as shown on figure 11, than with
traditional languages where the more it is formalized, the less it may
be understood.

Figure 11

Undrstandabfty

NATURAL
LANGUAGE

Traditional lanuage.

LISP

Forrnaftr

U NC LA S SI FlI E D/U NL IM ITE D

U N C I I T

, UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 C.4.10

V - CONCLUSION

As have been emphasized before, CCIS cannot be handled by conventional
development methodologies, where development is not begun until the
specs are settled and approved. To come back to figure 1,
incremental development with the involvement of the end-user during
the whole cycle is a key issue which can only be coped with, at the
time being, through object-oriented approaches. This allows to follow
much more closely the curves of evolutions of users'needs and
technological trends as shown on figure 12. But this will probably
put into question, in the very next future, the traditional
procurement procedures for such systems because of the difficulty of
controlling the costs. This is a challenging question, but some
elements can be given for answering it :

- software is expensive. The granularity of object-oriented approach
allows to spare time and money thanks to reuseability;

- maintenance is much easier, also because of granularity, and thus much
cheaper;

- and the customer does not end with a system which is not used
operationnally. Which is an interesting way of saving money.

Figure 12

TECH4NOLOGY

ITOMM__ _ _ _

UNCLASSIFI ED/UNLINI TED

U N C A ,, S IF I E D I I T l l i l l E D

NATO UNCLASSIFIED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 5. Date: 6. Total Pages:
15.04.91 12

7. Title (NU):

A Structure for Distributed Conmand and Control Information
Systems using Commercially available Software

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
Dr. Werner Storz

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
FGAN/FFM/RuF Defence Research Section
Neuenahrerstr 20 NATO Headquarters
D-5307 Wachtberg B-1110 Brussels
Germany Belgium

(Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

ISO/OSI REFERENCE MODEL, CCIS, COTS, ADA, DISTRIBUTION, SECURITY

14. Abstract:

The implementation of modern distributed C&C information systems
(CCIS) should follow three principles:

- The structure and the services of the ISO/OSI Reference Model
should be an integral part of the systems

- The programming language Ada should be applied

- Commercial-off-the-shelf (COTS) should be used as much as possible.

The paper will discuss problems and solutions for development
following these lines.

NATO UNCLASSIFIED

UNCLASSI FIED/UNLIMITED

D.1.1 AC/243(Panel 11)TP/1

A STRUCTURE FOR DISTRIBUTED COMMAND AND CONTROL INFORMATION

SYSTEMS USING COMMERCIALLY AVAILABLE SOFTWARE

Dr. Werner Storz *

1. Introduction

2. Protocol Stacks in the ISO/OSI Reference Model

3. A Layered Architecture for Distributed C&C

Information Systems

4. Conclusions

5. References

Chief C&C Division at FGAN/FFM.

D 5307 Wachtberg-Werthhoven

UNCLASSI FIED/UNLIMITED

UNCLASS I F I ED /UNL I MI TED

AC/243(Panel 11)TP/1 D.1.2

1. INTRODUCTION

Experience with existing Command and Control (C&C) infor-
mation systems has shown that these systems have an extended
life cycle of about 20-30 years. Planning C&C information
systems such time periods have to be taken into account.
Within these time periods, however, the political, military and
technical situation will change with the result of changing
requirements. The actual political development in Europe supp-
orts this statement. It is therefore necessary to design C&C
information systems for adaptibility. In this way they might
be adapted to changing operational and technical requirements
through their life cycle.

To get this flexibility we have to design a well-struc-
tured modular system with well defined interrelationships and
common interfaces between the modules. The adaptation of the
system will then be done by (local) modification or change of
modules. This procedure is also suitable to benefit from deve-
lopment of commercially available software which might be inte-
grated into the C&C information system as new modules.

Another aspect of influence on the design of C&C informa-
tion systems is the requirement of cooperation between deployed
C&C information systems. This is especially important in the
context of NATO. In the Alliance C&C information systems of
distinct hierarchical levels and different nationalities have
to be interoperable. To guarantee interoperability for such
distributed, heterogeneous systems standards for the communica-
tion protocols are imperative.

Bearing in mind these requirements we want to define an
architecture for distributed C&C information systems. There is
already ongoing work in several NATO-committees and working
groups concerning this problem area (protocols: AC/302. Sub-
group 9; Ada: AC/302. (ADA)). We will pay attention to results
of these groups in following three principles concerning the
structures of distributed C&C information systems:

- The structures and the services of the ISO/OSI Reference
Model should be an integral part of the system.

- The programming language Ada should be applied.
- Commercial of the shelf (COTS) software should be used as

much as possible.

We will now discuss problems and solutions for the deve-
lopment of C&C information systems following these lines.

UNCLASSIFI ED/UNLIMITED

UNCLASSI FI ED/UNLINITED

D.1.3 AC/243(Panel 11)TP/1

2. PROTOCOL STACKS IN THE ISO/OSI REFERENCE MODEL

The common structure of the OSI Model with its seven lay-
ers is shown in Figure 1. This evidently well structured model
[11. [21 does not show its inherent weakness: In each layer
several alternative protocols are available. Especially in the
military field different protocols in the lower layers will
be needed and used for different networks: Wide Area Networks
(e.g. X.25, ISDN). Local Area Networks (e.g. Ethernet, FDDI)
and other types of network offered by the ever evolving tech-
nology.

Application

Presentation

Session

Transport

Network

Link

Physical

Figure 1: Open Systems Interconnection Model

The OSI model offers eight possible addressing schemes for
the network addressing and we may choose between five transport
protocols at the transport level. At the higher protocol layers
we have also the possibility to select different services.

Not all combinations of protocols result in a functioning
communications system. For this reason profiles of protocol
stacks have been defined. But these profiles are only partially
compatible. That's why one should select one specific profile
for a network of communicating C&C information systems. Figu-
re 2 shows such a profile. The layer 3c contains the internet-
work protocol CLNP (Connectionless Network Protocol). The sub-
networks (sublayers of layer 3) might be X.25-networks or other
networks (e.g. ISDN, Ethernet, FDDI).

UNCLASSIF I ED/UNLIMITED

UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 D.1.4

Layer 7 Network
Application FTAM VT Directory Management

X.400 X.400
Layer 6 Abstract Syntax
Presentation Notation (ASN.1)

Layer 5 BAS
Session

Layer 4 TP4 TPO
Transport

Layer 3 c) CLNP

Network b) X.25
X.25

a)
Other Networks

Layer 2 LAPD LAPB
Link

Layer I WAN WAN
Physical

Figure 2: OSI Protocol Suite

Thus on top of heterogeneous subnetworks a common
internetwork protocol is available. The internetwork protocol
is connectionless. We therefore need the connection-oriented
transport protocol TP4 on top of it. The protocol layers 5, 6,
7 need no further discussion in this context. A second protocol
stack shown here is X.400-TPO-X.25. This profile might be ad-
vantageous for using commercially available networks to trans-
port X.400 mail. The profiles shown in Figure 2 are roughly
equivalent to that defined by GOSIP (Government Open System
Interconnection Profile) for the usage in U.S. governmental
systems 131.

The above mentioned problem of a common addressing
scheme in the internetwork sublayer (Network Service Access
Point (NSAP) address) may be solved in the following way: The
heterogeneous subnetworks use different address structures. For
a general structure a hierarchical address structure seems to
be adequate. The OSI model has two hierarchical addressing
schemes. Examples of both are presented in Figure 3. The upper
part of Figure 3 shows the NSAP address of GOSIP. The Authority
and Format Identifier (AFI) of this type of NSAP address has
the value 47. The Initial Domain Identifier (IDI) with the va-
lue 0006 specifies the address as an U.S. governmental one. The

UNCLASSIFIED/UNLIMITED

UNCLASSI FI ED/UNLIMITED

D.1.5 AC/243(Panel 11)TP/1

AFI IDI DSP

47 0006 Vers AdminAuth Res RoutDom Area EndSystem Nsel

1 2 1 3 2 2 2 6 1

GOSIP-NSAP-address

IDP DSP

AFI IDI UKDP UKDSP

39 826 UKFI UKDI

1 2 1/2 3/2-7/2 12 - 10 Octetts

BSI-NSAP-address

Figure 3 : Examples of hierarchical OSI-NSAP-Addresses

attribute 'EndSystem' designates the subnetwork address, the
attributes 'Administration Authority', 'Routing Domain', 'Area'
are the hierarchical part of the address.

In the lower part of Figure 3 the NSAP address is shown as
defined by British Standards Institute (BSI)[4]. The Authority
and Format Identifier of this type contains the value 39. The
Initial Domain Identifier (IDI) contains the Domain Country Co-
de. The value 826 indicates the country UK. The UK Domain Part
(UKDP) identifies an organisation which is responsible for the
administration of the UK Domain Specific Part (UKDSP) an ad-
dress part which might be hierarchically structured. Depending
on the value of the UK Format Identifier (UKFI) the components
UKDP and UKDSP are of variable length. UKDP varies from 2 to 4.
UKDSP varies from 12 to 10 octetts. DSP, the sum of both compo-
nents, has a fixed length of 14 octetts.

To implement a distributed C&C information system on top
of heterogeneotus networks an NSAP address of the discussed ty-
pes has to be specified.

3. A LAYERED ARCHITECTUP. FOR DISTRIBUTED C&C INFORMATION

we propose a model for a modular distributed C&C informa-
tion system which uses the protocol stack shown in Figure 2 as
standards as well as comercially available software. In this

UNC LA SS I F I E Q / UN L I M I T E D

UNCLASSI FIED/UNLINITED

AC/243(Panel 11)TP/1 D.1.6

ISO
User
tasks I

Control

Application Mal B VT 71TTI BI1i
services PSAP

Presentation 6 Presentation

SSAP
Session 5 Session

TSAP
Transport 4 Transport

NSAP
I / i I I / / / I / 3c I / / / I I II / I

3a, b

1,2

Figure 4: Layers of a Distributed C&C Information System

case the structure of Figure 4 can be assumed as a feasible
configuration. In the uppermost sublayer of the application
layer user tasks are executed. In course of processing these
tasks access application services such as data base, mail, vir-
tual terminal. A control sublayer coordinates these accesses to
the different application services.

Similar structures are discussed and proposed in the
ATCCIS Working Group. This group meets under the direction of
a steering group which is chaired by SHAPE and consists of
representatives from the Central Region nations and Allied For-
ces Central Europe. Its task is to define a system concept for
an army tactical C&C information system for the year 2000 and
beyond (5]. [6].

3.1 Usaae of Commercial Software and Ada

Quite a number of commercial software packages may be used
on the basis of the structure of Figure 4. The OSI protocol
stack for the levels I to 6 will soon be available. X.400 im-
plementations exist for the mail service. The data base service
is not yet available as OSI-implementation - there is up to now
no standard - but Commercial-of-the-shelf (COTS) products (e.g.
INGRES. ORACLE. INFORMIX [7],18].(9)) might be used as servers
with a reduced possibility of general distribution. The Virtual
Terminal is a standard now, but implementations are not yet
available. To overcome this 4ifficglty one might'use COTS pro-

UNCLASSI F I ED/UNL IMI TED

UN CLASSI FI ED/UNLIMITED

D.1.7 AC/243(Panel 11)TP/1

ducts based on the X Windows protocol (10], which, in addition,
offers more functionality at the user dialog interface. Using
this available software a C&C information system may be con-
structed up to the level of the servers of our model. The in-
terface to the servers, the control process and the user tasks
still remain to be implemented.

But a main requirement still needs further consideration
to use the programming language Ada as language standard in
NATO. A lot of the available software is written in C. These
modules cannot fulfill the NATO requirement of using Ada for
programming in C&C information systems. But the above mentioned
upper layers of the system (interface, control process, user
tasks) might be programmed in Ada. An example for such a pro-
ceeding is given later.

3.2 Security Problems

Up to this point we did not discuss the requirements con-
cerning security in C&C information systems. The standardized
OSI protocols do not contain the necessary funtions. There is
ongoing definition work in AC/302, Subgroup 9. This group pro-
poses to put a security sublayer between layer 3 and 4 to hand-
le the transport oriented communications security tasks [11].
Another sublayer should be introduced at the bottom of the
application layer to deal with the application oriented commu-
nications security tasks. Protocols with similar functions have
been introduced to ISO via the American National Standards In-
stitute. These protocols are now accepted and discussed as work
items by ISO.

The standardization and the implementation of these proto-
cols on the commercial market will last some further time. In
the meantime there exist two solutions for the communications
security problem: implementing own security protocols for the
above mentioned sublayers or using closed networks.

With regard to the C&C information system model as shown
in Figure 4 further security functions are needed at the
interface between control and servers. The security functions
belonging to the control layer are oriented to data flow, those
belonging to the servers are oriented to data access. For the
part of the C&C information systems model where no commrcial
software is available these functions have to be programmed
anyway preferably in Ada as mentioned above.

3.3 An Exverimental Implementation

To gather experience in the field of implementing C&C in-
formation systems in the structure Just discussed a project
was started at our institute. The name of the project is EIGER
(Experimentelles Informationsystem auf der Qrundlage jines

UNCLASSI F I ED/UNLIMI TED

UNCLASSI FIED/UNLIMITED

AC/243(Panel 11)TP/1 D.1.8

User Task User Task User Task

Control

Communi- Virtual DataBase Mail
cations Terminal

BCS BSS
Babsy

Ada Runtime System OSI

Operating System (e.g. Unix)

BCS = Basic Communication System
BSS = Basic Security System
Babsy = Basic Operating System

Figure 5: The Structure of EIGER

Rechnernetzes (experimental information system on the basis of
a computer network)). We have designed the system in the struc-
ture shown in Figure 5. An Ada programme is put on top of the
operating system and the OSI protocols. This Ada programme con-
sists of several Ada tasks following the structure of Figure 4.
Each box represents an Ada task (12).

The upmost sublayer contains the parallel user tasks. The
following sublayer is the control task and the next one con-
tains the tasks interfacing the servers. Babsy is a basic sche-
duling system for all the Ada tasks. BCS is a basic communica-
tions system (Ada task) which allows symmetric communication
between all Ada tasks instead of the direct asymmetric rendez-
vous concept of Ada. BSS. the basic security system is an Ada
packet with basic security functions used by the control layer
and the servers for the security handling of data flow resp.
data access C133.

The Ada tasks interfacing the servers communicate directly
with the OSI servers (e.g. mail). If OSI servers are not avai-
lable, commercial-of-the-shelf-software (COTS) should be used.
An example of such a non-OSI but commercially available server
is a data base server. Figure 6 shows the integration of a

UNCLASSI F I ED/UNL IMI TED

U N C I T E D

'I UNCLASSIFIED/UNLIMITED

D.1.9 AC/243(Panel 11)TP/1

TRANSI DBS
(ORACLE)

Ada-DB-TASK

DB
Inter- 4CPart DISTR

TRANSn

Figure 6: Attachment of a Data Base to EIGER

local data base system as server into EIGER. To provide the
needed data base system functionality approved and standardized
software should be used. we therefore use the standardized data
base language SQL (14] and as an example of an existing rela-
tional data base system ORACLE. operating on UNIX.

For the implementation of the interface between the
Ada-DB-Task of EIGER and ORACLE two problems have to be solved:
The handling of parallel transactions and the transformation
of data structures from Ada- to C-programmes and vice versa.
To handle parallel transactions ORACLE needs one process for
each transaction. The Ada-DB-Task has to control service calls
for several parallel transactions. Thus for each transaction a
process TRANSi will be created. The process DISTR creates and
deletes these processes TRANSi. Considering the problem of data
transformation we have to meet the following requirement: Data
structures have to be designed in such a way that they can cope
with the generality and variety of all possible data base ser-
vices. Therefore we need dynamic data structures containing the
description of basic types and constructed types. Such a data
structure exists in ORACLE. In EIGER a descriptive data struc-
ture similar to the Abstract Syntax Notation (ASN.1) of ISO has
been specified for usage in the Basic Communication System. In
the Ada-DB-TASK the transformation of these two descriptive da-
ta structures has to be done. Using this process structure and
data transformation service calls are sent from the Ada-DB-TASK
to the server and results are received the way back..

UNCLASSI F I ED/UNLIMI TED

UNCLASSIFIED/UNLIMITED

AC/243(Panel 1)TP/1 D.1.10

Without going into further detail we want to state that
the last mentioned problem concerning the need of descriptive
data at a server interface is a general one because all servers
in Figure 5 have to be independent from application data
structures.

4. CONCLUSIONS

We showed in the above sections how to use and integrate
commercially available software in a C&C information system.
Two areas of interest were addressed: OSI protocol stacks up
to the application layer (server functions) and non-OSI server
modules with commonly used service interfaces. The requirement
to use server modules limits the application of COTS software
because most COTS software has no interface for service
request calls. There exist e.g. commercial office communication
systems. The functionality of such a system is needed in a C&C
information system. But an office communication system is a
closed system with integrated man machine interface, data base
system and communications. Normally no service request interfa-
ces are available. It is expensive to split up such a closed
system into modules with service interfaces that might be inte-
grated in a C&C information system with a structure following
Figure 5. With this restriction in mind COTS software may be
used only for data base or man machine interface servers.

We started with the goal to define the architecture of a
distributed C&C information system using commercially available
software as far as possible. We specified the subrequirements
- use OSI
- use Ada
- use COTS

In Figure 5 a structure was defined that takes into consi-
deration all these points of view: Ada may be used for program-
mes in the upmost layer. In the lower layers commercial soft-
ware is available, which in most cases has not been programmed
in Ada. In this lower layer OSI implementations will soon be
available. But the absence of security features in the OSI
protocols will remain a problem in the near future. Servers not
available as OSI protocols especially local servers are availa-
ble as COTS software and may be integrated in the C&C informa-
tion system.

We have demonstrated that modular, distributed and
adaptive C&C information systems using commercially available
software are feasible and that this usage of available software
may save some funds. But development effort for the implementa-
tion of a C&C information system is still needed: The available
modules have to be adapted and integrated to build up a system
kernel, in the available modules the security components need

UNCLAS5 I F I ED/UNL IMI TED

1

UNCLASS I FI ED/UNLIMITED

SD.1.11 AC/243(Panel 11)TP/1

further development and the specific C&C-application functions,
which make up a big part of the system, have to be designed and
implemented.

5. REFERENCES

[I] A.S. Tannenbaum: Computer Networks, Second Edition,
Prentice-Hall Eaglewood Cliffs, 1989

[2] J. Henshall, S. Shaw: OSI Explained, end-to-end computer
communication standards, Ellis Horwood Ltd. Chichester,
1989

[3] The GOSIP Advanced Requirements Group; U.S. Government
Open System Interconnection Profile (GOSIP) Draft,
Version 2.0, National Institute of Standards and
Technology, Gaithersburg MD 20899, April 1989

[4) Draft British Standard Guide: The UK scheme for the
allocation of ISO-DCC format OSI NSAP-address, Version 8,
July 1989

(5] K.H. Wagner: Future Interoperability in Army CCIS - Army
Command and Control :nformation System Study (ATCCIS),
AFCEA, Oslo Symposu-=., April 1989

(6] M.R. Krick: The Army Tactical Command and Control
Information System (ATCCIS),
Technical Report STC TR-120, Nov 1988

[7] M. Stonebraker: The INGRES Papers.
Addison-Wesley Publishing Company, 1986

18] R.B. Bisland: DATABASE MENAGEMENT Developing Application
Systems Using ORACLE.
Prentice-Hall .nternational Editions. 1989

[9] R. Finkelstein. F. Pascal: SQL Database Management
Systems, BYTE. January 1988. P. 111-118

10] R.W. Scheifler: X Protocol Reference Manual for
Version 11, O'Reilly & Associates, Inc., July 1989

[i] NATO OSI Security Architecture "NOSA",
AC/302 (SG/9) D/48. Sept 1988

UNCLASSI F I ED/UNLIMI TED

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TP/1 D.1.12

[123 G. B~hler: Implementierungsansitze ffir ein experimentel-
les Flahrungsinformationssystem unter Verwendung der Pro-
grammiersprache Ada,
Forschungsbericht 398, Forschungsinstitut fQr Funk und
Mathematik. D-5307 Wachtberg, Mdrz 1990

[13] M. Gasser: Building a Secure Computer System,
Van Nostrand Reinhold, New York, 1988

[14] C.J. Date: A Guide to the SQL Standard,
Addison-Wesly Publishing Company, June 1987

UNCLASSI FI ED/UNLIMITED

1

NATO UNCLA S I F I ED

REPORT DOCUMENTATION PAGE

1. Reclpient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 5. Date: 6. Total Pages:
15.04.91 14

7. Title (NU):

Army C31 System Software Design: A Case Study

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
(*) IPA P.Y. Simonot - (**) IETA J.L. Auboin

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
(*) Defence Research Section Defence Research Section

NATO HQ B-1110 Brussels NATO Headquarters
(**) DAT/SEFT - Fort d'Issy B-1110 Brussels

92131 Issy-les-Moulineaux Belgium
France (Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

C31 SYSTEM, SYSTEM MODELLING, DISTRIBUTED SYSTEM, SOFTWARE
DESIGN, INTEROPERABILITY, RECONFIGURABILITY, GRACEFULLY
DEGRADABLE SYSTEM, EVOLUTIONARY SYSTEM DESIGN

14. Abstract:

The paper discusses the French Army C31 system which was fielded
beginning in 1988. The system was designed primarily as an evo-
lutionary information system. The paper presents the basic concepts
and the software architecture used to achieve this goal. Emphasis is
also put on specific military features regarding system survivability
namely, database distribution and duplication, on-line reconfigura-
tion and Command Post "Step-up".

NATO UNCLASS I F I ED

UNCLASSI FI ED/UNLIMITED

0.2.1 AC/243(Panel 11)TP/1

ARMY C31 SYSTEM SOFTWARE DESIGN: a case study

by

Ing6nieur des Etudes et Techniques d'Armement J.L.Auboin(*)
Ing6nieur Principal de l'Armement P.Y. Simonot (**)

1. INTRODUCTION

1.1 Background
1.2 Initial System Modeling
1.3 Context of the Full-Scale Development

2. DESCRIPTION OF THE SYSTEM

2.1 General
2.2 Army and Corps Level
2.3 Division Level
2.4 Communications and Interoperability
2.5 Military Issues

3. SOFTWARE GENERAL ARCHITECTURE

3.1 Application Host Software Package Concept

3.1.1 Information Description Language
3.1.2 Software Organization

3.2 Application Host Software Package Design

3.3 Application Software Architecture

4. SPECIFIC FEATURES

4.1 Survivability Requirements and their Refinements
4.2 Duplicated/Distributed Database Management
4.3 Command Post "step-up"
4.4 On-line Configuration/Reconfiguration Management

5. CONCLUSIONS AND RESEARCH RECOMMENDATIONS

(') Information Processing and Systems Department
(D6partement Informatique et Systimes)
DAT/SEFT - Fort d'Issy-les-Moulineaux - 92131 ISSY-les-
MOULINEAUX - FRANCE

(**) Defence Support Division - NATO Headquarters - 1110 -
BRUSSELS - BELGIUM
(previously Head, Information Processing and Systems

UNCLASSI FIEDIUNLIMITED

AC/243(Panel 11)TP/1 D.2.2

1. INTRODUCTION

1.1 Background

Activities on Army C31 systems started in France early
in the sixties together with the development of the French
Artillery C3 System (ATILA) and the French Communication system
RITA. Two prototypes were developed and fielded respectively in
1968 and 1974. Both were to be used at the Division level; the
first one, SERPEL (in 1968) was dedicated to the dissemination
and processing of Intelligence information. SYCOMORE which has
been fielded from 1974 to 1976 was designed to support the Intel-
ligence and Manoeuvre Division cells.

Following the reorganization of the French Army and the
suppression of the Battalion command level, it was agreed that a
Command and Control (C2) system should focus on the Corps level
and, based on the experience gained from the development of the
previous prototypes, a test-bed for a new system named SACRA was
developed and then used by a specific operational cell in 1983
and 1984. The test-bed implemented a full Corps Command Post
(CP). It was designed as a network of mini-computers and used
commercial hardware compatible with military equipments. Two
different packet switching networks were used: a datagramme net-
work and a prototype of a dedicated ring network including auto-
matic reconfiguration features. A number of both operational
(user) and technical concepts were validated at this stage and
alternatives for the full scale development of the system were
proposed.

1.2 Initial System Modeling

Key elements of any full scale development decision
were the evaluation of the future system performance and the
assessment of its feasibility. In this respect, system modeling
was extensively used to prepare various architecture options. The
modeling process involved three steps:

(1) a functional analysis to define a logical view of the
work performed by the users in a Corps CP; each process
was analyzed as a succession of elementary operations;
the result was a model giving the frequency of each
elementary operation performed at any workstation in
the CP; the number of instructions to be executed and
the number of mass storage accesses required for each
of these elementary operations were evaluated using
the existing testbed software; this led to an evalua-
tion of the computing power required for each main
function in the system; this evaluation was independent
of any system design;

(2) hardware component modeling: the system was viewed as a
network of hardware components: workstations, compu-
ters, mass storage equiipments, local network access
points, RITA network access points, etc; the elementary
operations identified in the logical model (1) were

UNCLASSIFIED/UNLIMITED

D.2.3 AC/243(Panel 11)TP/1

each component was established using queuing network
models; various mappings were envisaged leading to
various behavioral models of each component;

(3) overall system performance evaluation; the final step
was to map the functional model developed in (1) to a
network of hardware components the behaviour of which
had been defined during step (2); one of the main
objectives was to evaluate the system response time to
a user input; the modularity of the modelling approach
used in steps (1) and (2) allowed the evaluation of a
large number of different architectures.

The main outcomes of this modeling approach were that:

(1) the system could be designed as a network of work-
stations and 68000 family-based micro-computers as
database and communication processors; minicomputers
should be included in the design only if complex simu-
lation and/or computation was to be used to provide
decision aids;

(2) the principal limitation to response time was the mass
storage access conflicts, which could be avoided by
distributing the database and temporary files over a
number of devices;

(3) communication processors should be used to interface
the CP's to the communication systems (RITA and commer-
cial networks); specific access management policy
should be implemented to avoid contention on circuit
switching access points.

1.3 Context of the Full-Scale Development

when the decision was made to develop the system, two
main constraints were defined:

(1) in order to make the system affordable, the design
should use commercially available hardware and software
whenever possible; a second generation system would be
developed in the mid-90's using ruggedized or fully-
militarized hardware as appropriate;

(2) an evolutionary approach should be used with a view to
fielding a functionally limited version of the system
within 3 years; following versions would provide
extended user functions; a pragmatic approach was
favoured to allow for user/designer interactions during
the design process.

The system (named SICF: "Systime Informatique de
Commandement des Forces") was developed under contract from the
DAT/SZIT by TIOMSON/DCS as the main contractor. The system
provides information processing support to the 1st Army, Corps
and Division CP's.

UNCLASS I FI E D/UNLIMI TED

AC/243(Panel 11)TP/1 D.2.4

2. DESCRIPTION OF THE SYSTEM

2.1 General

In order to limit the software development workload it
was decided to use a common design for the three command levels
to be implemented. This design was deduced from the modeling
described above, taking into account specifics imposed by the use
of commercially available components. Basically, each CP consists
of a number of -work-stations and dedicated mini-computers. These
devices are linked together through an ETHERNET local network.
Each CP is connected to the others through existing networks (see
section 2.4 below). Three types of functions are provided by the
system: database management, operational situation management
(including man/machine interface) and data/message communica-
tions. Accordingly, three types of hardware components are used:

(1) database management computers; BULL DPX family compu-
ters were implemented; it was decided to implement the
system under UNIX with a view to using commercially
available software; the DPX family was selected because
it provides a wide range of machine performances with a
reasonably good software portability;

(2) user interface devices; each of them is composed of a
work-station and output devices such as printers and
plotters; the system uses 68020-based UNIGRAPH graphic
workstations;

(3) communication processors; they are composed of a
UNIGRAPH work-station and modems including automatic
dialing features when appropriate.

This architecture proved to be very convenient to pro-
vide the required system performance at each command level and to
fulfill specific military requirements such as dynamic reconfigu-
ration and gracefully degradable features.

2.2 Army and Corps Level

The architecture of an Army or Corps level CP is given
in figure 2.1. BULL DPX/5000 RISC mini-computers are used instead
of micro-computers as defined during the modeling phase due to
the fact that the modeling was based on the assumption that a
real time operating system would be used; given that UNIX task
management system requires much more disk accesses than a real
time operating system, it was necessary to use mini-computers to
provide disk access facilities faster than those usually
implemented in commercially available micro-computers.

Any hardware device used in the system is duplicated to
allow possible reconfiguration in case of breakdown or destruc-
tion. For instance, there are two database management mini-
computers and two communication processors. For the latter, they
are used in a master/slave configuration. The master communica-
tion processor is managing all the network access points. It runs

UNCLASSI FI ED/UNLIMITED

D.2.5 AC/243(Panel 1l)TP/1

master or the slave communication processor depending on the
physical link used. This allows for higher performance and more
secure operation.

Database
"0 a.1 ... cti
Poessor Processor

USER IlLRrAC1 D(VIC(S

E I NL R(I

Dato~t - US[IP :%?l[rfaC Dt',,rrS comatin Icat Ann
M~nlapm *.t Processor
ornr-'ssnr

Figure 2.1

Corps Command Post Hardware Architecture

OD.I .eobe
an at tR %t L A OtI 0 L Aommun(cIt DoIE

*~r qse~r Processor

OP ,ZOOu

t t oI #I.I !

Figure 2.2

UNCLASSIFIEOIUNLIMITED

AC/243(Panel 11)TP/1 D.2.6

2.3 Division Level

The architecture of a Division level CP is similar to
the architecture of a Corps level CP (see figure 2.2). However,
attention had to be paid to the constraints imposed to the
Division CP, namely the fact that a division headquarter may be
deployed either in buildings or in shelters carried by trucks.
For that reason, BULL DPX/2000 68020-based micro-computers are
used as database management processors. Furthermore, it was
decided not to duplicate the hardware components at the division
level but to implement specific recovery procedures involving the
alternate CP and a recovery database element (see section 4
below).

2.4 Communications and Interoperability

The RITA network is used as the primary communication
channels between CP's (i.e. for external communications). The
system can interface voice radio and cable access points (1200-
2400 bps) as well as high speed data communication channels (48
kbps). Interfaces to the RITA message switching system (CAREME)
are also provided. Specific modems were developed including auto-
matic dialing functions when appropriate. These modems exist
either as militarized or as commercial hardware.

Public military or commercial networks can also be used
in different phases of the manoeuvre (e.g. military infrastruc-
ture network as RITTER in France or civilian data network such as
TRANSPAC). In this case, for security reasons, the information is
encrypted/decrypted using appropriate off-line encryption devices
before/after their transmission through the non-secure part of
the communication system (i.e. at the communication processor
level).

Currently, the SICF is a central element of the C2
organization in the French Army. This means that the system will
interface C3 systems above the Army level (national and NATO C3
systems), at the Corps level (ally C3 systems) and below the
Division level (national C3 systems such as ATLAS for artillery
and the Regiment Information System (SIR) for the other
services).

A quadrilateral effort in co-operation with Germany,
the UK and the US led to an interoperability demonstration this
month (May 1990). It is intended to use the designed interface
(based on X-400 message handling protocols) also for national
purposes.

2.5 Military Issues

Given that the system is deployed in a rather adverse
environment, it was decided to study and implement some hardware
protection. Specific containers were designed to protect the
hardware components when moving. wheh the CP is deployed the
containers are unloaded and front panels are removed so that the
man/machine interface is accessible. Reinforced connectors were

UNCLASSI FI ED/UNLIMI TED

0.2.7 AC/243(Panel 1I)TP/I

is not clear what level of protection was actually required and
further study is probably required to elucidate the actual envi-
ronmental resistance of commercial hardware.

3. SOFTWARE GENERAL ARCHITECTURE

3.1 Application Host Software Package Concept

One of the main objectives was to use an evolutionary
approach for software development. The rationale was twofold.
First, budget constraints imposed to delay the specification and
development of a number of user functions. Furthermore, by
nature, military requirements evolve: new conditions (e.g.
introduction of new systems such as the C2 system itself, or new
weapons) imply changes to the C2 organization and methods which
in turn imply evolutions of the C2 system.

3.1.1 Information Description Language

The basic design concept is that most of the work
performed through an information system consists of a sequence of
data representation transformations which comply to input/output
formatting rules. For instance, operational data is sent to a CP
as a formatted message (using specific NATO formatting rules).
The content of the message is stored in a database using the
corresponding database access language. Then the data are dis-
played on a graphic display using the corresponding graphic
display commands, etc (see figure 3.1).

1MM1 Formats DB Formats

ia,,-f n ,,,r i L, tabase
Interface t Server
Serve-

I FPL IC..T 1 OIj S 0F TW AR E
kusel funCtionS)

Tj. E,.ternal Message
Formatting Communication Formatting
S Server Server

Tal. Form.t, Msg Formats

IDL Interface
-- EL Interface

Figure 3.1

UNCLASSI FIED/UNLIMITED

AC/243(Panel 11)TP/1 D.2.8

It is therefore possible to define a common information
description language (IDL) which will be used:

(1) to convey information from one process to an other;

(2) to design a limited set of operations to manipulate
information coded in IDL; these operations are for
instance: read, write, initialize, etc;

(3) to design tools to generate automatically the codes
used to transform the IDL into External Languages (EL),
i.e. languages used for input/output (including the
accesses to the database and the communication system);
the generated codes are called servers.

3.1.2 Software organization

The IDL being defined, from a static point of view, the
software consists mainly in a number of pieces of code or tasks,
each of them transforming IDL to IDL or IDL to/from EL. These
tasks must be executed in a given sequence to perform the requi-
red user functions. The application software implements this set
of user functions.

It consists of a set of transactions. A transaction is
a coherent set of processes called Transaction Processes (TP). A
transaction may run several TPs in parallel but each TP is a
sequential process (from a UNIX standpoint, a TP is an executable
program).

The behaviour of each upper level entity (namely appli-
cation and transactions) is described as a sequence of guarded
commands ("if condition then action"). Conditions are lower level
entity state variables. Actions are the exchange of commands and/
or state variables with the upper level and lower level entities.
An entity receives commands from the upper level entity and send
state variables back; it sends commands to the lower level enti-
ties and receive state variables back. Executable programs are
automatically created by a Transaction Process Engine (TPE)
generator. Therefore, no software development is required at the
application or transaction levels.

The basic IDL manipulation functions, the tools used to
generate servers and TPEs and the servers themselves are included
in the "Application Host Software Package" (AHSP). The TPs are
called the "Application Software".

3.2 Application Host Software Package Design

The AHSP was developed using C language under UNIX
System V. This choice was made at the very beginning of the
design. The rationale to use UNIX was the large number of avail-
able software packages and the-multi-user capability of this
operating system. Accordingly, C language was used because the
UNIX/C interface is straightforward which was not the case for
any other languages such as PASCAL, ADA or LTR3 (French Military
Ft~nlarl Rea1 Time vrnirm-t anaaae).

UNCLASSI FI ED/UNLIMITED

D.2.9 AC/243(Panel 11)TP/1

Three layers have been defined (see figure 3.2):

(1) at the bottom level are the standard packages, i.e.
UNIX System V, GKS, X-WINDOW, TCP/IP, CLIO database
management system (SYSECA), etc;

(2) the second level is designed to make the upper software
layers configuration independent (i.e. to hide conside-
rations of the actual hardware architecture of the CP
from uppei layer software); this level contains basic
functions to manipulate the IDL and to manage applica-
tion contexts, recovery points, inter-process com-
munications and system supervision;

(3) the third level contains IDL/EL transformation codes;
these codes may be associated to a physical device
through the appropriate standard package (Man-Machine
Interface Server through GKS (alphanumeric and gra-
phic), Database Management System Server through CLIO,
External Communications Server through TCP/IP and a X-
400 Message Handling System) or they may be stand-
alone (Message Formatting Service, Table Formatting
Service).

For development and testing purposes, the AHSP also
contains all the tools needed to generate and test the system,
including dialog simulation tools to help specify the man-machine
interface and on-line specific debugging tools. Note that the
AHSP represents the "fixed" part of the software, i.e. the part
of software which does not need to be modified or is generated
automatically through development tools when new user functions
are implemented.

Application Software
(user functict, Transaction Processes)

ral-Machne Dataoase lExternal Message Taole
Interface Access Comm's Formatting Formatting
Server Server Server Server Server

Aoplcation most Software Package Kernel

UNIA operating system, GKS, A-WINDOWS, CLIO,

figure 3.2

UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 D.2.10

3.4 Application Software Architecture

The application software consists of user function spe-
cific codes which are executed in conjunction with the AHSP code.
To develop a new user function it is only necessary:

(1) to define extensions to the IDL (if required) and to
run the AHSP tools to generate the associated codes
(actually these tools generate the IDL manipulation
functions, the IDL/EL transformer codes (servers) and a
number of C *include" files which contain C data struc-
ture definitions to be used by the programmer when
developing new TPs);

(2) to develop those TPs which are specific to the new
function; these TPs will primarily consist of C func-
tions which translate an IDL input file into an IDL
output file; they contain the algorithmic part of the
new functions (the actual data processing); various
decision aids, including limited expert systems in the
near future, may be implemented at this level;

(3) to create the tables used by the TPE generator to
generate the corresponding transactions.

From a methodology standpoint, it is not possible to
adopt the classic water-fall software life cycle model when this
new software design approach is adopted. In fact, one cannot find
a simple linear relationship between a user function requirement
and its implementation in the system. Instead, this relationship
is better represented by a matrix which relates user functions to
TPs, given that one TP may be used in various user functions.
Therefore, new software management procedures (and notably new
software test and validation procedures) are to be defined in
this context.

4. SPECIFIC FEATURES

4.1 Survivability Requirements and their Refinements

Survivability is a criterium of paramount importance
for C3 systems. It is essential that information remain available
even in case of breakdown and/or destruction. To achieve this
goal, an appropriate level of hardware redundancy together with
suitable data duplication procedures should be implemented.
However, a fully duplicated distributed system is not technically
feasible nor affordable. Trade-offs can be considered taking into
account the specifics of military requirements and the military
operating procedures:

(1) Usually, CPs are at least duplicated; however, given
that these CPs are mobile and that they can work only
when they are stationary, it is necessary to have three
sites available to maintain duplication when one CP is
moving (one moving, two stationary). This is the case
at the Corps level but not at the Division level. When
*hree r tes i -oert available, it is Dossible to dupli-

UNCLASSIFIED/UNLIMITED

D.2.11 AC/243(Panel 11)TP/1

to the same unit) using the RITA communication capabi-
lities or to use the internal redundancy of a Corps CP
to move that CP in two steps (one half moving, one half
stationary).

(2) A CP is organized in cells (for instance: manoeuver,
intelligence, etc..). Each cell is in charge of main-
taining part of the information available at the CP:
the enemy situation is maintained by the intelligence
cell, the friendly forces status is maintained by the
manoeuver cell, etc. Therefore, it is possible to de-
fine sub-sets of data each of which "belongs" to one
cell: only a given cell (i.e. a known set of work-
stations) can modify the data in a given sub-set. These
sub-sets can be used as granules of database distribu-
tion in order to simplify access control.

(3) The lifetime of most of the information maintained at a
Corps or Division CP is long compared to the C3 system
response times. This means that it is admissible to
"loose" processed data provided that the source data
remain available. This means in turn that some delay in
the duplication of processed data is possible but that
the message handling system should be very robust.

(4) It is possible to define priority user functions based
on the tactical situation. These functions should
survive a catastrophic breakdown or even destruction.
However, priorities change. Thus, totally automatic
reconfiguration is not adequate but system administra-
tion functions should be made available to manage the
system. A specific work-station is given this function.

4.2 Duplicated/Distributed Database Management

Database duplication in a CP is achieved by mirror
database-like mechanisms. But, instead of using two disk drives
connected to the same CPU, the facility is implemented using two
separate CPUs and disk drives. Data exchanges are supported by
the CP's ETHERNET local network.

Database updates are executed first on the source
database server. If the updates are executed properly, they are
batched and will be sent to the image database server only when a
recovery point is reached by the client transaction. This guaran-
tees data coherence and simplifies error recovery. When an error
is detected, an error report is sent to the System Administration
workstation (SAW) where system management functions are available
to restore a correct state (see Section 4.4).

Given that the source server function consumes more
computing power, the source/image server functions are distribu-
ted among the two available database management processors. One
processor will be a source server for one data sub-set and image
server for another. This can be'dynamically changed by the SAW
without system interrupt (in fact, database accesses are suspend-
ed during a short period of time which is transparent for the end

UNCLASSI FI ED/UNL IMITED

AC/243(Panel 11)TP/1 D.2.12

4.3 Command Post "Step-Up"

The Command Post "step-up" consists in deactivating the
"active* (main) CP and activating at the same time the Alternate
CP. It is a complex process due to data coherence and time con-
straints. Attention should be paid to the fact that when the
alternate CP is moving, database updates will not be available
(nor processed) at the alternate CP. Hence, it is required first
to update the alternate CP database and then to maintain informa-
tion at both CPs. All data transfers use the RITA high speed data
links (48 kbps) to reduce the transmission delay. However, it was
shown during the system modeling phase (see section 1.2) that the
limiting factor was primarily the disk access load at the
alternate CP. It is assumed that the databases at both CP are
identical at the beginning of the exercise (or war). Thus, the
step-up process requires three steps:

(1) The source database of the alternate CP is updated
using the image database of the active CP. Updates of
the image database are suspended and stored in a
separate file (journal). Messages are received and
processed at the active CP. Even though the alternate
CP is operating, database user updates at this CP are
not allowed;

(2) the image database of the active CP is re-activated.
The update journal is periodically sent to the alter-
nate CP. Messages received at the active CP are auto-
matically relayed to the alternate CP (source informa-
tion is therefore available inmnediately, and processed
information with some delay); database user updates are
not allowed at the alternate CP;

(3) The message send/receive function is suspended at the
active CP. The last update journal is sent to the
alternate CP and the active CP is disconnected from
RITA. Upon receipt of the update journal, the alternate
CP is disconnected from the RITA network and reconnec-
ted as the new active CP. From this point on, it will
receive all messages sent to the active CP. This is
totally transparent to its addressees. The old active
CP can be reconnected to RITA as alternate CP or be
dismounted and move.

Phase 2 of this process is performed continuously with
a third element (for instance the rear Corps CP) in order to pro-
vide instantaneous step-up capabilities if the main CP is sudden-
ly unavailable. In this case, the step-up process can be continu-
ed or re-initiated from this third element.

4.4 On-line Confi-uration/Reconfiguration Management

Specific features are implemented in the AHSP to
support on-line system configuration management:

(1) One key element in configuration management is the
catherina of errcr messaaes to help evaluate the svstem

UNCLASSIFIED/ UJNL I MIT ED

D.2.13 AC/243(Panel 11)TP/l

damages and select appropriate recovery actions. All
error messages are routed to the SAW. This function can
be allocated to any work-station in the CP.

(2) System management functions are based on the concept of
Software Logical Sets (SLS). Software logical sets
contain a number of transactions. Each of these sets
corresponds to those user functions which are needed by
a specific operational user (such as intelligence cell
transactions). A file back-up device is linked to each
SLS. Recovery point information will be stored by the
transactions or TPs on that device. SLS are installed
as a whole by the configuration management functions so
that all the transactions belonging to the SLS are
executed on the same physical machine.

(3) the AHSP provides automatic routing of inter-process
communication messages. To do so, only logical addres-
ses are defined at compile time; physical/logical
device correspondence tables are maintained through the
SAW at run time and are used by the AHSP for message
routing.

The following user functions are provided at the SAW:

(1) Error messages display. A catalogue of possible reco-
very actions is provided to help the user find the
solution corresponding to the detected error;

(2) mapping SLS to physical machines. The mapping can be
changed dynamically allowing any kind of system con-
figuration/reconfiguration to be performed with little
system technical knowledge.

(3) CP "step-up" management functions. Given the complexity
of the process, aggregate functions are provided to
perform a CP "step-up".

5. CONCLUSIONS AND RESEARCH RECOMMENDATIONS

The system was fielded beginning in 1988. After a
maturation period, it is now considered as very helpful by the
users and is used routinely during military exercises. Further
software versions are fielded regularly to provide new user
functions.

From the development standpoint, the initial modeling
phase together with the experience of the previous system test-
beds proved to be very useful to help identify possible limita-
tions and determine the system architecture concepts. The main
conclusions drawn from the modeling phase appeared to be valid
even though the actual system design was quite different (due to
the fact that commercially available hardware and software were
used). Such a modeling effort is therefore strongly recommended
for any new development. However, further research is required to
improve overall distributed system performance evaluation model-

UN CLASS I F I ED / UNL IMIT ED

AC/243(Panel 11)TP/1 D.2.14

ing, with a view to guiding the design process, i.e. to answering
the question "What is the most cost effective architecture to
provide a given level of performance?"

One major issue has been the design of the AHSP.
Although the basic principles (IDL, servers, etc) were stated at
the very beginning of the system design process, the lack of
design and development tools made the development process
difficult. A lot of effort was unduly spent in designing and
developing the software. However, it is argued that this type of
"parameterized" software is the most appropriate state-of-the-art
technology to fulfill evolutionary system development needs.
Furthermore, even though most C2 systems are nationally specific,
opportunities for co-operative C2 system development can be found
for the AHSP.

Hence, research work is required in the area of
development methods for this kind of system. Research should also
be directed toward the study of the ways new technology (either
hardware or software) can be incorporated in an existing system.
This would be extremely helpful in the context of evolutionary
system design.

Validation tools are also required to ensure that
survivability functions are correctly designed and implemented.
Even though there is a strong presumption that the implemented
reconfiguration functions fulfill the survivability requirements,
there were no methods to evaluate and to validate this aspect of
the system.

UNCLASSI F I ED/UNL I MI TED

NATO UNCLASSI F I ED

REPORT DOCUMENTATION PAGE

1. Recipient's Reference: 2. Further Reference:

3. Originator's Reference: 4. Security Classification:
UNCLASSIFIED/UNLIMITED

AC/243(Panel 11)TP/1 5. Date: 6. Total Pages:
15.04.91 13

7. Title (NU):

C3 for the 90s - New Ideas in Survivability

8. Presented at:

AC/243(Panel 11) Symposium on Military Information Systems
Engineering - RSRE, Malvern, UK - 8-10 May 1990

9. Author's/Editor's:
Mr. Richard A. Metzger, Mr. Carl A. DeFranco Jr.

10. Author(s)/Editor(s) Address: 11. NATO Staff Point of Contact:
RADC/COTD Defence Research Section
Griffiss AFB NATO Headquarters
NY 13441-5700 B-1110 Brussels
United States Belgium

(Not a Distribution Centre)

12. Distribution Statement:

Approved for public release. Distribution of this document is
unlimited, and is not controlled by NATO policies or security
regulations.

13. Keywords/Descriptors:

COMMAND AND CONTROL, DISTRIBUTED SYSTEMS, INTEGRATION,
REPLICATION, REDUNDANCY, SURVIVABILITY

14. Abstract:

This paper uses a new approach to achieving survivability for
Command and Control systems by application of new technologies In
distributed computing and adaptive communications. By employing
redundancy through replication and distribution, and using advances
in Distributed Information Systems, enhanced probability of func-
tional survival is achieved. The cost of replication is balanced
through reduced manpower. Recent and on-going research and develop-
ment efforts are discussed to illustrate the advances available.

NATO UNC LASS I F I ED

UNCLASSI FI ED/UNLIMITED

D.3.1 AC/243(Panel 11)TP/1

C3 FOR THE 90's - NEW IDEAS IN SURVIVABILITY

Richard A. Metzger *
Carl A. DeFranco Jr. **

Table of Contents

1. INTRODUCTION

2. BACKGROUND
2.1 Definitions
2.2 General Requirements for Survivability

3. SPECIFIC APPROACHES TO SURVIVABILITY

3.1 Hardening
3.2 Redundancy
3.3 Employing Redundancy

4. CURRENT PROGRAMS
4.1 Multi-Media Communications Capability
4.2 Distributed Information Systems
4.3 Planning in a Distributed Computing Environment
4.4 Survivable Adaptive Planning Experiment

5. CONCLUSIONS
5.1 New Choices
5.2 Integration

* Mr. Metzger is a Supervisory Computer Scientist and
Chief, Distributed Systems Branch
Command and Control Directorate
Rome Air Development Center
triffiss Air Force Base, NY, USA

" Mr. DeFranco is an Electronic Engineer and
Center Program Manager
Distributed Systems Branch
Command and Control Directorate
Rome Air Development Center
Griffiss Air Force Base, NY, USA

UNCLASSI F I ED/UNLIMITED

UNCLASSI FIED/UNLIMI TED

AC/243(Panel 11)TP/1 D.3.2

1. INTRODUCTION

1.1 In a hostile environment, a key capability of any
military system is survivability, which has been both a
requirement and an elusive goal for Command, Control, and
Communication (C3) systems for several decades. With
military force mobility on the increase, C3 system
survivability in the 1990's will take on new urgency. The
driving functional requirements will be for dynamic response
to a rapidly changing threat scenario. Major elements in
providing this capability are rapid access to updated
intelligence, adaptive target selection and mission planning,
and a flexible C2 system to provide responsive force
management. Critically important will be the need to sustain
this capability through a hostile encounter. Traditional
methods of providing survivability for C3 systems have been to
harden and shield the facilities housing them. During the
90's, replication and dispersion will replace hardening as the
primary method of achieving survivability. Systems that can
dynamically recover and restore functionality among surviving
nodes of geographically dispersed clusters will be the
architectures of choice.

1.2 A series of research efforts are underway to bring the
above capabilities to reality, addressing a number of major
issues in the areas of distributed information processing
systems and highly survivable communications systems.
Intelligent resource management through distributed operating
systems provides key capabilities in fault tolerance and
reconfigurability. Uniform access across multiple computers
provides the foundation for distributed database management
which, in turn, provides concurrency and integrity for
multiple users across multiple databases. Reliably linking
command center assets in a dynamically changing topology with
sporadic connectivity will require major advances in adaptive
communications. Opportunities abound for application of
expert systems and knowledge bases to speed the decision
process. All of these areas are being agressively pursued and
promising results are emerging.

2. BACKGROUND.

Although the principles that apply to survivability must be
considered for both strategic and tactical warfighting
capabilities, it is clear that application of these principles
differs for the actual arena. The geographic domain under
consideration differs significantly, the extent of the goals
are not equivalent, and the time response may cause major
differances. However, the classic methods of making a system
survivable have been centired around making the elements
physically stronger to withstand damage and if that is
insufficient, to provide redundant .copies to replace the lost
elements.

UNCLASSI FI ED/UNLIMITED

UNCLASSI FIED/UNLIMITED

D.3.3 AC/243(Panel 11)TP/1

2.1 GENERAL REQUIREMENTS FOR SURVIVABILITY

2.1.1 Physical survival involves preserving the existence of
an actual physical resource, e.g. facilities and people. To
do so generally requires physical action such as removal of
the asset from the destructive environment or hardening of the
resource against destruction through physical protection
methods, or both.

2.1.2 Functional survival is concerned with preserving a
capability to perform rather than protecting a specific
resource. In other words, if we wish to insure our capability
to do tactical planning, we ensure that the planning function
survives, rather than a planning center. This would normally
involve replication and dispersion of assets to provide
survival by numbers rather than hardness.

2.1.3 Modes of degredation will also affect system
survivability, depending upon the system's fault tolerance or
sensitivity to failures within the system. Although the
distinction may not be black and white, we will focus on two
principal modes here:

1) Catastrophic - the failure mode that
exhibits a step transition from fully
operational to totally non-functional.
Obviously, a system subject to functional
failure for minor subsystem problems will not
provide acceptable probability of survival.

2) Graceful - the failure mode in which the
effects of subsystem failures on overall
functionality is minimized until some lower
bound of capability is reached. Careful system
design and redundancy can greatly improve
resistance to faults and failures.

2.1.4 Connectivity is a general measure of the ability of
system elements to pass or exchange information. A number of
factors and parameters are used to describe and measure
connectivity within a system.

1) Topology- which defines routes of
connectivity between set of nodes forming the
system

UNCLASSI FI ED/UNLIMITED

UNCLASSI FIED/UNLIMI TED

AC/243(Panel 11)TP/1 D.3.4

2) Links- physical channels between nodes of
the topology which provide the transmission
media and are characterized by:

a) Bandwidth- data per unit of time
transmitted over a link

b) Delay- time between sending and
receipt of data on a link

3) Protocols- which control and specify the physical and
logical flow of data across the links of the system

4) Throughput- the aggregate measure of data transiting
the system per unit time based upon all of the above
factors as well as the sending and receiving processes

5) Control and Management - the tools by which all of
the above elements are observed, measured, and controlled
to achieve optimum performance of the system, or achieve
specific objectives.

3. SPECIFIC APPROACHES TO SURVIVABILITY

3.1 Hardening. Conventional protection methods have
generally depended upon two basic techniques: hardening and
distance. The distaice method involves placing valuable
assets far to the rear of battle, reducing probability of
destruction by weaponry. With modern missile technology, this
method is far less effective than in the past. The hardening
method relies on current technologies and improvements in
materials science to provide necessary structural stability
against detonating weapons and the corresponding impulse loads
on buildings. Substantial structural reinforcement,
underground construction, and blast deflection techniques are
common. In addition, isolation of internal structures from
the external building by large springs provide additional
protection against shocks. To To protect against nuclear,
chemical and biological hazards carried from the external
environment, decontamination facilities are provided to remove
contaminants from personnel entering the facility, and to
purify the air and water used internally. While these methods
provide reasonably effective protection against conventional
warfare techniques, they are becoming extremely expensive and
may not provide effective resistance to nuclear effects.

UNCLASSIFI EDUNLIMITED

UNCLASSIFIED/UNLIMITED j
D.3.5 AC/243(Panel 11)TP/1

3.2 Redundancy. The concept of alternate command centers is
very old, but the approach has been used mainly to replace a
destroyed primary facility. Duplication of facilities
attempts to provide functional survival by creating and
maintaining sufficient copies of a C31 system or subsystem to
insure that total destruction is improbable. Often, the
alternate facility is often only minimally capable compared
with the primary. Even when automated information systems are
included in command centers and facilities, the backup
capability of alternate centers remains limited. Given the
rapid advances in the speed and power of modern computers,
coupled with dramatic reductions in cost, size and energy
input, there is no reason for alternate facilities to be any
less functional than primary ones.

3.3 Employing Redundancy. Efficient use of redundancy as a
technique involves integrating two separate concepts:
physical replication and dispersal, and logical unification.

3.3.1 For protection, physical dispersal of replicated copies
is essential, since the two main objectives are to insure
survival of the functions contained within the asset and to
decrease the probability of destruction by enemy action to a
very low value. For example, a determined foe might develop a
capability to destroy a certain command facility with a
probability of 0.80. If we replicate the facility into four
copies, the probability of all four being destroyed, i.e.
loss of that entire function, is only 0.41; our foe would
require a fourfold increase in weaponry, and his probability
of success is cut in half.

3.3.2 Logical unification may be achieved in two major forms,
networked systems and distributed systems. Networking is a
reasonably mature technology that provides mechanisms for
exchanging data across some form of multiple user
connectivity. Users generally require some knowledge of other
entities on the network in order to establish the data
interchange. Distribution builds upon networks, and extends
the concept by managing the global (to the network) tasks of
addressing and resource allocation across the network. To the
user, the network of resources becomes one large virtual
computing system, and the concept of geographic location
vanishes.

3.3.3 Virtually every Command and Control system of the
future will be critically dependent upon high performance
computing systems to provide commanders with immediate access
to vast quantities of data. Reliance on these systems will
extend from remote sensors acquiring and fusing data under
computer control, to planners using sophisticate tools to

UNCLASSIFIED/UNLIMITED

UNCLASSI FI ED/UNLIMITED

AC/243(Panel 11)TP/1 D.3.6

generate options and plans, to the execution and monitoring of
the mission itself. In addition to these operational
functions, the information handling system must exhibit the
same level of survivability as other elements of the system.
Distributed Information Systems (DIS) offer the potential for
major increases in survivability through dynamic
reconfiguration of the allocation of processing resources
around lost elements.

3.3.4 This increased survival does not come without cost. In
our example above, we must create four complete copies of the
resource to be preserved. In a manpower intensive system,
this may involve considerable expense and require personnel
not always available. In this realm, reduction of manpower
through automated information systems provides the fulcrum on
which to balance manpower and equipment costs. The agressive
use of computer automation coupled with the rapdily advancing
technology in artificial intelligence and knowlege engineering
promise to provide the reduction of critical manpower.

3.3.4.1 Communication is required to support distributed
systems, both for information passing and for control and
management. Such connectivity is required to provide a
logical path for information between any two elements that are
or could be integrated into a functional system or subsystem.
Given the added rquirement for system survivability, we must
provide support for operation under less than ideal
conditions.

3.3.4.1.1 Reconstitution/reconfiguration are required to heal
damage to the connectivity or to add additional elements to
the existing system. Such capability must include some
intelligent decision-making process that directs the
reconfiguration into the optimum connectivity for the system.
The term often used to describe this function is the
Intelligent Communications Controller. Current efforts
include research into methods that couple the computing
resource allocation function with the communication resource
allocations. This coupling provides the system management
function with insight into process communication requirements
that can be used to crate an optimized configuration for
current operational demands.

UNCLASSI F I E/UNLINITED

UNCLASSI F I ED/UNL I MI TED

D.3.7 AC/243(Panel 11)TP/1

4. CURRENT PROGRAMS

4.1 Multi-Media Communications

4.1.1 Several programs are underway to develop a robust
connectivity by combining transmission media into a unified
system. One current program at RADC is known as Multi-media
Communications Capability or M2C2. The long-term objective is
to combine diverse physical transmission media such as
multi-band RF, fiber optics, wirelines, and satellites to
produce a transmission system with enough physical endurance
to preclude a total loss of connectivity. Management and
control capability will be integrated into the system. A key
physical characteristic is small size and high mobility for
tactical situations.

4.1.2 The present work has focused on creating a multiple
radio assembly covering the RF spectrum from HF to UHF, a
controlling computer system, and the software required to
monitor transmission requirements and extend the channels over
which information can flow by creating alternate paths from
available links, or by combining them into parallel channels
for higher throughput. Such a system provides link
survivability in a synergistic fashion by combining systems
that display differing sensitivities to interfering energies.
An example is the time-varying effects of nuclear atmospheric
effects which disrupt VHF/UHF bands quickly but over
relatively shorter periods than HF bands, which degrade more
slowly and for longer times.

4.1.3.1 The current system accepts data for transmission, and
adaptively creates packets for transmission, packet size being
dependent upon link quality. Link quality is judged by the
number of retransmissions required for success, and packets
are dynamically adjusted during transmission. The RF channel
selection begins with the highest speed channel available, and
shifts downward in capacity as the RF media degrades. Link
transmission speeds range from 16 kilobits per second over UHF
and VHF channels down to 2400 bit per second over HF. Because
transmission is packetized, channel failure affects only the
packet in progress. After reestablishing the link on another
radio, data tranfer continues from the last successful packet.
A series of experiments indicates that information transfer
can be considered error free. Thus, for the individual link,
the system provides graceful degredation, taking advantage of
other channels (and eventually other transmission media) that
display differing effects from interference.

UNCLASSIFIEDIUNLIMITED

UNCLASS IFI ED/ UNL I MI TED

AC/243(Panel 11)TP/1 D.3.8

4.1.3.2 The original prototype system was built from

available radio assets, and used the Zenith 248 computer, and
IBM PC-AT compatible, as the system controller. Current
versions use U.S. military radios and VME-bus 68030
microprocessors running Unix as a hardware base. This new
configuration allows simultaneous transmission on a
point-to-point link, and provides a store-and-forward
capability as well as higher processing speeds. Data files
ranging from simple text files to digitized video have been
passsed across the system. In addition to the laboratory
facility, two additional assemblies have been installed within
vehicle mounted shelters. The initial prototypes have been so
successful that requests for support from other programs is
causing diffculty in scheduling system availability.

4.2 DISTRIBUTED INFORMATION SYSTEMS

4.2.1 The key to providing Distributed Information System
(DIS) functionality is the resource management capability
provided by the system level software called the distributed
operating system (DOS). The DOS provides the global
integration environment which makes the collection of
computers in the DIS appear as a single cohesive computing
environment. Within this DOS environment all entities
(directories, files, processes, etc.) have a unique identity
assigned by the DOS. This global name space spans all of the
machines and allows the DOS to provide the user with location
transparent access to any of the objects, without regard to
which machine the request originates from, or on which machine
the data may be located. Similarly, the system can readily
move files or processes among the machines since a uniform
environment exists across all of the elements. If an
application progrm has need of a particular file it can
provide the identifier for the file to the system, and the
system will know from the identifier which computer in the
configuration owns the file, and a call for transport or copy
of the file can be made.

4.2.2 This ability to automatically move files and processes
among the nodes of a DIS has significant potential for
enhancing survivability. Critical data files or application
modules can be automatically replicated and maintained current
at a remote host. In the event of the loss of a primary copy
the remote copy can be activated as primary, and with a
"rolling" replication scheme a replicated copy will always be
available.

UNCLASS I F I ED/UNL IMI TED

UNCLASSI F I ED/UNL IMI TED

D.3.9 AC/243(Panel 11)TP/1

4.2.3 There are numerous trade-off's that must be considered
in designing any automatic replication scheme. Maintaining
consistency in a replicated database has been the subject of
extensive research over the last fifteen years. While a solid
theory exists, the implementations are plagued by performance
degradation resulting from the synchronization requirements.
Newer insights based upon the ideas of "weak consistency" show
promise for reducing the overhead by relaxing the requirements
of strict consistency based upon serializability by taking
advantage of application specific characteristics of the data.

4.2.4 To fully realize the benefits of distributed systems
for survivability, dynamic process replication must also be
developed which does not rely strictly upon checkpointing. A
partially completed process that is terminated must be
restarted from a s*a' le state usually represented by a
checkpoint. If the time between checkpoints is long, then
time to recover tc he terminated point is large. If finer
grained checkpointing is used then the overhead it introduces
can significnatly decrease performance. Mechanisms are being
developed which can replicate processes togehter with their
in-process state information which will provide much greater
flexibility in replication and point the way toward dynamic
process migration.

4.3 Planning in a Distributed Computing Environment.

4.3.1 Known as PDCE, this program focused on investigation of
distributed computing architectures containing planning
systems, and the system parameters affected by the system
design. Under contract with the Rome Air Development Center,
Advanced Decision Systems of Mountain View, California, USA,
focused on the primary goal of survival of function as
discussed above, i.e. survival of the capability to create a
plan, rather than the survival of a planning cell as the
important result. In addition, investigation of measures of
performance were made for systems utilizing checkpoint-restart
as a survivability technique, as well as negotiation among
computing entities for task execution.

4.3.2 Three architectures were proposed as providing some
form of functional survival:

1) A small number, less than 5, of highly capable
replicated planning nodes, each operating autonomously,
but with knowledge of the others. A primary node is
selected to perform all required planning tasks. Others
provide standby capability.

UNCLASSI FI ED/UNL IMI TED

U N C L A S S I F I E 0 I U N L I M I T E D

AC/243(Panel 11)TP/1 D.3.10

2) A moderate number, up to 50, of fully capable
replicated planning nodes operating in a cooperative
fashion, sharing various tasks of planning. Each node
has sufficient power to do all required computing, but
may tasks are shared.

3) A larger number, over 50, of partially capable nodes,
with limited and unequal computing power. The system
creates a single virtual planner by efficiently utilizing
the capabilities of the nodes to complete a plan.

4.3.3 Given that other programs were i c,sing on the first
architecture, the focus fell to architecture two as within
reasonable technical and cost bounds for accomplishment.
Based on a functional model of a US strategic system, the
planning system was broken into operations and required data
files. The design makes to following assumptions:

1) Each node has enough computing power to complete a
task.

2) Each node has the current copies of all data
required.

3) The planning can be abstracted into nine basic
"roles," defined by the database categories involved,
e.g. targeting, assignment of weaponry, etc.

4.3.4 The model, known as the Network Reconsititution
Simulator (NRS), simulates a geographically wide distribution
of nodes across the continental United States, and presumes
that a surprise attack will randomly destroy some fraction of
the nodes. In order to reestablish planning functionality, a
reconstitution algorithm is executed in two stages. Prior to
disruption, the system computes the connectivity from each
node to its neighbors, and heuristically determine the best
match of function to node, based upon available throughput and
interprocess communications requirements. After disruption,
which includes random loss of nodes, surviving nodes execute a
broadcast mechanism and build tables of connectivity, each
then selecting the most appropriate role or function based
upon its connectivity. An optional system function tested
added the ability of nodes to negotiate their roles with other
nodes. This extension of reconfiguration, based upon initial
tests, can improve planning performance as much as 75 percent,
and provides a much more graceful mode of degredation.

UNCLASS I F I ED/UNLIMITED

UNCLASSIFIED/UNLIMITED

D.3.11 AC/243(Panel 11)TP/1

4.3.5 Coupled with the NRS tests, measurements were made to
determine the effect of various scheduling algorithms used in
operating systems_ to evaluate their efficiency. Results
indicate that the scheduling algorithm selected is dependent
upon the types and sizes of the processes to be run, the
existence of special purpose processors, and the homogeneity
of the majority of processors. Analysis was also done on the
costs of incorporating a checkpoint-restart capability into
the operating system that allows migration of processes
between hosts within a system. Such a capability provides
enhanced reliability by improving functional survival, but at
some cost in time. The studies included examination of the
checkpointing frequency using a binary tree and a vector
computation. No specific recommendation was developed, but
rather a set of data that can be used in evaluating future
work.

4.4 The Survivable Adaptive Planning Experiment is a program
aimed at demonstrating the applicability of advanced computing
and communication technologies toward creating a deployable,
survivable strategic planning system that functions in a
highly stressed environment. Currently in its Exploratory
Development phase, the second of a four phased approach, the
long term goal is to fully demonstrate the planning software
in a multi-node configuration, with simulated environmental
stresses. Whereas traditional strategic planning has been a
highly centralized batch process, with control and parameters
often embedded directly within executable code, the new system
design draws upon object oriented design principles,
separating the system into four identifiable areas:

1) Knowledge based functional control

2) Algorithmic processes

3) Data and database management

4) Inter and intra-node communications

4.4.1 Underlying the system design is the creation of a fully
distributed computing capability, both within the basic node,
and among nodes in an overall network. This distribution is
being based upon the Cronus Distributed Operating System,
developed over the past eight years by RADC in conjunction
with BBN Laboratories in Cambridge, Massachussetts, USA.
Cronus provides both the distributed and the object oriented
environment for the software engineeTing.

UNC LASS IFI ED / UNLIMITED

UNCLASSIFIED/UNLIMITED

AC/243(Panel ll)TP/1 D.3.12

5. CONCLUSIONS

5.1 New Choices. The state of the art in both communications
and data processing have provided new options for achieving
higher levels of survivability in future command and control
systems. Hardening is no longer the only, or for that matter,
the best way to achieve endurance. A new alternative is to
replicate copies of the critical elements that can become
active when the necessity arises. Recent advances have made
this redundancy in distributed copies possible. While there
is additional overhead associated with maintaining the
consistency and concurrency of the replicated copies, the
inclusion of the capability which provides that function
improves overall system performance. It allows the system to
reallocate resources for better performance and fault
recovery. The ultimate benefit is the assurance that the
system will not fail catastrophically and that as long as some
minimum set of resources remains, critical mission functions
will be executed.

5.1.1 The achievement of these goals requires the additional
development of technologies that are now in the feasibility
stage. To support the multi-cluster distributed information
system that is needed, communications must be available both
in hostile and non-hostile situations. This capability will
be provided by the multi-media communications systems, which
not only utilize multiple transmission media, but also can
intelligently manage the data transmission among them. In a
commensurate way, the computing elements that connect through
the communications nodes to form the complete distributed
information handling structure must be capable of adaptively
allocating processes and data among the nodes. Basic
feasibility of these concepts has been demonstrated and it is
reasonable to expect their availability for operational usage
within the next several years.

5.2 Integration. The key to the successful employment of all
these advanced technologies is the skillful integration of
these systems. A major aspect to speeding the development and
transition of the technology is the use of rapid prototyping.
As the technologies are demonstrated as feasible, the
integration of them into testbeds that are accessable to both
the developer and the user is an excellent vehicle to obtain
early feedback into the R&D community. While there will be
limitations in both functionality systems point of view, and
interactions with other elements of the system can be
identified. The use of this "build a little, test a little"
strategy can provide a beneficial evolutionary path for
maturing of the technology.

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

0.3.13 AC/243(Panel 11)TP/1

Finally, as the technology approaches full scale development,
the application of system engineering principles in both
hardware and software specification, engineering, and design
is essential in quickly bringing operational capability into
the real world realizing the full potential of modern
information processing technology.

References

Berets, J.; Sands, R.; "Introduction to Cronus", Technical
Report RADC-TR-89- 151, Vol IV, Rome Air Development Center,
Griffiss AFB NY, 13441-5700

Cromarty, A. et.al., "Reconstitution, Reconfiguration, and
Knowledge-based Routing in a Heterogeneous Distributed
Computing Environment," Technical Report ADS-TR-3112-02,
Advanced Decision Systems, Mountain View, CA

Cromarty, A. et.al., "Dynamic Adaptive Resource Management
for Real-Time Distributed Planning,", Technical Report
ADS-TR-3191-1 (Not Released for Publication at this time),
Advanced Decision Systems, Mountain View ,CA

UNCLASS I F I ED/UNL IMI TED

UNCLASSIFIED - UNLIMITED

D DOCUME[1 CENT RES
NATO does not hold stocks of DRG publications for general distribution. NATO initiates distribution of all DRG
documents from its Central Registry. Nations then send the documents through their national NATO registries, sub-
registries, and control points. One may sometimes obtain additional copies from these registries. The DRG

Document Centres listed below can supply copies of previously issued technical DRG publications upon request.

BELGIUM THE NETHERLANDS
EGM-jSRL TDCK
Quartier Reine Elisabeth P.O. Box 90701
Rue d'Evere, 1140 Bruxelles 2509 LS Den Haag
Tel:(02)243 3163, Fax:(02)243 3655 Tel:(070)3166394, Fax:(070)3166202

CANADA NORWAY
Directorate of Scientific Information Services Norwegian Defence Research Establishment
National Defence Headquarters Central Registry
MGen. George R. Pearkes Building P.O. Box 25
Ottawa, Ontario, K1A OK2 2007 Kjeller
Tel:(613)992-2263, Fax:(613)996-0392 Tel:(06)80 71 41 Fax:(06)80 71 15

DENMARK PORTUGAL
Forsvarets Forskningstjeneste DirecNo-General de Armamento
Ved Idramsparken 4 Minist~rio da Defesa Nacional
2100 Kobenhavn 0 Avenida da Iha da Madeira
Tel:3927 8888 + 5660, 1499 Lisboa
Fax:3543 1086 Tel:(01 610001 ext.4425, Fax:(01)611970

FRANCE SPAIN
CEDOCAR Ministerio de Defensa,DGAM
00460 Arm es SDG TECIN, C/ Arturo Soria 289
Tel:(14552 4500, Fax:(1)4552 4574 28033 Madrid

Tel:(91)3020640, Fax (91)3028047
GERMANY

DOKFIZBw TURKEY
Friedrich-Ebert-Allee 34 Genelkurmay Genel Plan Prensipl&
5300 Bonn 1 Savunma Arastirma Daire Baskanligi
Tel: (0228)233091, Fax:(0228)125357 Ankara

Te:(4)1 176100 ext.1 396, Fax:(4)1250813
GREECE

National Defence Headquarters UNITED KINGDOM
R+T Section (D3) DRIC.
15561 Holargos, Athens Kentigern House, 65 Brown Street
Tel: (01)64 29 008 Glasgow G2 8EX

Tel:(041)224 2435, Fax:(041)224 2145
ITALY

MOD Italy UNITED STATES
SEGREDIFESA IV Reparto PF.RS DTIC
Via XX Settembre, 123/A Cameron Station
00100 Roma Alexandria, VA 22304-6145
Te:(06)735 3339, Fax:(06)481 4264 Tel:(202)274-7633, Fax:(202)274-5280

DEFENCE RESEARCH SECTION
NATO HEADQUARTERS |

a 1101 BRUSSELS |
BELGIUM i

Tekhone 1321(2728 42S - Tiefix 1321(2)728 410
(not a ONG Dorir Didrn'inion Cadre)

